1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。
2、0的绝对值是其本身。
3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
4、除0外,任何数的的0次方等于1。
5、已知单位“1”用乘法计算
6、积与因数的大小关系
7、被除数与商的大小关系
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、图上距离:实际距离=比例尺;
11、图上距离=实际距离×比例尺;
12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、圆内最长的线段是直径。(__)
15、几个直径和为n的圆的周长=直径为n的圆的周长
16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2
18、长方形里最大的圆。两者联系:宽=直径
19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。
20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。
21、生活中的百分率:
22、直接求一个数是另一个数的百分之几一个数÷另一个数
23、已知比一个数多百分之几的数是多少,求这个数
24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。
28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
32、小数与百分数互化的规则:
33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
34、分数应用题基本数量关系(把分数看成比)
35、画线段图:
36、如果两个数是互质数,它们的公因数就是1。
37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
38、因为零不能作除数,所以分数的分母不能为零。
39、乘法分配律:
40、减法的性质:
41、圆的面积=圆周率×半径×半径
42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)
46、根据比的基本性质,可以把比化成最简单的整数比。
47、化简比:
48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
50、使学生能在方格纸上用数对确定位置;
51、百分数的意义,求一个数是另一个数的百分之几的应用题;
52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
56、比和比例的联系:
57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO
——六年级上册数学知识点 50句菁华
1、异分母分数加减法计算方法:
2、小数除法法则:
3、连结梯形对角线中点的线段等于两底的一半。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分数乘整数的意义
6、分数乘分数的的计算方法
7、找单位“1”的方法
8、求一个数的几倍、几分之几是多少,用乘法计算。
9、20是25的几分之几? 20÷25=4/5
10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)
15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。
16、加法交换律:a+b=b+a
17、直接求一个数是另一个数的百分之几一个数÷另一个数
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
21、路程一定,速度比和时间比成反比。
22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。
23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。
25、分数应用题基本数量关系(把分数看成比)
26、被除数÷除数=被除数×除数的倒数。
27、自然数和0都是整数。
28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
32、小数点位置的移动引起小数大小的变化
33、被除数 相当于分子,除数相当于分母。
34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
35、、长方体
36、圆形
37、圆柱体
38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
39、分数除法应用题:
40、根据比的基本性质,可以把比化成最简单的整数比。
41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
42、理解并掌握分数除法的计算方法,会进行分数除法计算;
43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
45、百分数的意义,求一个数是另一个数的百分之几的应用题;
46、小数的倒数:
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、比和比例的意义:
49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
——六年级下册数学知识点归纳 40句菁华
1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh
3、圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)
4、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
5、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
6、两、三位数乘一位数的估算方法
7、求近似数:
8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
9、比的意义
10、比例的意义:表示两个比相等的式子叫做比例。
11、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
12、判断这两个量的比值是否一定,比值一定就成正比例关系;
13、带分数的倒数。先把分数化为假分数,然后将分子分母调换位置,即为该数的倒数。
14、负数:
15、0既不是正数,也不是负数,它是正、负数的分界限
16、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
17、圆柱的切割:
18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
19、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
20、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
21、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
22、33……、
23、看图答题
24、读法:在所读数的前面加上“负”
25、摄氏度
26、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。
27、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h
28、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。
29、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。
30、统计。
31、两条*行线之间的距离处处相等。
32、画高:
33、税率
34、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?
35、自然数从1到n,共用了942个数字,n是几?
36、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?
37、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
38、折线统计图:
39、温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。
40、多位数乘法法则
——六年级上册数学知识点总结 40句菁华
1、圆的定义:圆是由曲线围成的一种*面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
7、圆周率实验:
8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
10、取近似数的方法:
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
13、比例的基本性质是在比例里两内项积等于两外项积。
14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
18、分子分母是互质数的分数叫做最简分数。
19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
21、整数除法计算法则:
22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
26、小数的倒数:
27、各类地形中,什么地形面积?什么最小?
28、这个月哪项出最多?支出了多少元?
29、小数点位置的移动引起小数大小的变化
30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
31、减法的性质:
32、整数乘法计算法则:
33、小数乘法法则:
34、同分母分数加减法计算方法:
35、异分母分数加减法计算方法:
36、小数除法的意义
37、、长方形
38、、长方体
39、三角形
40、圆形
——二年级上册数学知识点 50句菁华
1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。
2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。
3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。
5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
7、万以内数的读法和写法与1000以内的数读法和写法相同。
8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。
9、“有余数除法”的复习。
10、“方向和路线”的复习。
11、“万以内的加、减法”的复习。
12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
13、实数
14、轴对称与坐标变化
15、一次函数与正比例函数
16、用二元一次方程组确定一次函数表达式
17、从统计图分析数据的集中趋势
18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。
19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
22、差=被减数—减数
23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
24、56页例5
25、探索并掌握两位数减两位数不退位)的计算方法。
26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。
28、渗透统计的思想和方法。
29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
31、厘米和米
32、笔算减法
33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。
34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;
35、观察物体时,要抓住物体的特征来判断。
36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;
37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
40、同分母分数的加减法。(分母不变,分子相加或相减。)
41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点
42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。
43、三角形的面积=底×高÷2:S=ah÷2。
44、长方体的体积=长×宽×高:V=abh。
45、圆柱的侧面积=底面圆的周长×高:S=ch。
46、常用的长度单位:米、厘米。
47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
48、差=被减数-减数
49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
50、乘法算式的写法和读法
——五年级上册数学知识点 50句菁华
1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、用计算器来验算
6、有限小数:小数部分的位数是有限的小数,叫做有限小数。
7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
8、长方形面积=长×宽字母公式:s=ab
9、组合图形:转化成已学的简单图形,通过加、减进行计算。
10、重叠法;
11、分割*移法;
12、公式计算面积法;
13、三角形面积=底×高÷2(s三=ah÷2)
14、1*方千米=100公顷=1000000*方米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、求近似数的方法一般有三种:(P10)
17、(P11)小数四则运算顺序跟整数是一样的。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、(关于“大约)应用题:
20、圆柱的侧面积=底面圆的周长×高:S=ch。
21、长方形的周长=(长+宽)×2:C=(a+b)×2。
22、*行四边形的面积=底×高:S=ah。
23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。
24、圆的面积=圆周率×半径×半径:s=πr2。
25、三角形的面积=底×高÷2 S=ah÷2
26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
31、所有的方程都是等式,但等式不一定都是方程。
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
33、身份证码: 18 位
34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
35、可以表示起点
36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
38、表示相等关系的式子叫做等式。
39、方程一定是等式;等式不一定是方程。等式>方程
40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?
43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
44、求近似数的方法一般有三种:
45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
46、除法中的变化规律:
47、有些事件的发生是确定的,有些是不确定的。 可能
48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
49、正方形里最大的圆。两者联系:边长=直径
50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——二年级下册数学知识点 40句菁华
1、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
2、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
4、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
5、当吹东南风时,红旗往()飘;
6、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
7、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
8、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
9、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
10、时针走一大格是1小时,走一圈是12小时;
11、数位顺序表里:从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。
12、用估算策略解决问题。
13、用统计图表来表示数据的情况。
14、根据统计图表可以做出一些判断。
15、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。
16、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
17、用乘法口诀求商时,想除数和几相乘的被除数。
18、用乘法和除法两步计算解决实际问题的方法:
19、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
20、除法的性质
21、完全商
22、三角形的内角和定理,及三角形外角定理。
23、学会用“正”字记录数据。
24、两边之和大于第三边,两边之差小于第三边。
25、认识整时方法:分针指着12,时针指着几就是几时。
26、教材分析:
27、引导学生积极参与知识的构建,营造民主、和谐、*等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
28、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
29、3/1分子分母同时乘以3,得到9/3,这也是整数3的一个分数形式。
30、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。
31、可以得知整数化分数,可以化无数个。
32、可以表示分界
33、鸽巢原理也叫抽屉原理。
34、存在任意长度的素数等差数列。(格林和陶哲轩,2004年)
35、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
36、正方形的周长=边长×4:C=4a。
37、长方体的表面积=(长×宽+长×高+宽×高)×2。
38、正方体的表面积=棱长×棱长×6:S=6a×a。
39、205. 207. ( ). ( ). ( )
40、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
——六年级上册数学复习资料 40句菁华
1、比和除法、分数的联系:
2、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、常见的百分率的计算方法:
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
7、能用数对表示物体的位置,正确区分列和行的顺序;
8、用1计算法:也可以用1去除以这个数,例如0、25,1/0、25等于4,所以0、25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
9、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
10、比和比例的区别:
11、比和比例的意义:
12、比和比例的联系:
13、圆:*面上到定点的距离等于定长的所有点组成的图形叫做圆。
14、百分数与分数的区别:
15、百分数的意义:
16、日常应用:
17、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
18、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
19、圆的周长公式:圆的周长等于圆周率乘直径用字母表示C=πd
20、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
21、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
22、1250.24
23、56.25515.719.625
24、556.251547.1176.625
25、你还能提什么数学问题:和一共占百分之几。
26、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
27、圆周率实验:
28、圆的周长公式
29、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
30、确定起跑线:
31、常用各π值结果:
32、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
33、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;
34、规律(分数除法比较大小时):
35、“[]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
36、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。
37、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
38、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
39、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
40、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
——六年级语文下册知识点 30句菁华
1、形近字、形声字和多义字;
2、练习形式:
3、能够理解多义词在特定语言环境中的含义。
4、表示"注意力高度集中"的成语:聚精会神全神贯注专心致志 目不转睛.
5、来自寓言故事的成语:自相矛盾 坐井观天 守株待兔 刻舟求剑
6、句子的概念与类型
7、修改病句
8、积累并运用名言警句、歇后语、对联、谚语等
9、、关于句子的概念与类型:
10、分辨实写与联想的语句。了解联想与比喻的异同点。
11、概括主要内容和中心思想。
12、体会文章详略的方法及作用。
13、作文。
14、树的生长"不确定"指老天下雨,种树人浇水没规律。人生活的"不确定"指生活中不可预知的坎坷、曲折、磨难。桃花心木在不确定中寻找水源、拼命扎根,就能长成百年大树,显示出勃勃生机。人在不确定中生活,经历风雨和磨难就能成为意志坚强有所作为的人。树似人,人如树,这篇文章是借物喻人的表达方法。
15、作者是怎么具体描述日子来去匆匆的?仿照课文中的写法,再写几句。
16、《顶碗少年》介绍了一个表演杂技的顶碗少年,屡败屡战,最后终于获得了成功,从中感悟到了( )的道理;
17、《手指》一课的作者是我国著名的画家、作家 ( ),通过饶有趣味地描述五个手指各自的长处短处,告诉我们在生活中( ) 的道理。
18、《各具特色的民居》中,先介绍了( )族民居,它的特点是( ),作用是( );再介绍了( )族竹楼,它的特点是 ( ),作用是有利于( ) 。
19、《灯光》中的主人公( )为了实现( ) 的理想,在部队进攻受阻的千钧一发之际,毅然点燃了手中的书本,照亮部队前进的道路。
20、《十六年前的回忆》通过对*的回忆,是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形式的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了*的镇定、沉着;被害后写了全家的无比悲痛。
21、背诵全文。
22、《养花》:本文作者通过写自己的养花经历,切身体会到养花的乐趣,表达了对美好生活的热爱之情。
23、《索桥的故事》:本文通过讲述都江堰上“安澜桥”的故事,抒发了对民间百姓善良、淳朴的爱心的赞美之情,表达了对造福百姓的人的敬意。
24、《野草》:本文通过写植物种子神奇的力量,赞颂了野草顽强的生命力,比喻人们要有顽强的意志,鼓励人们克服阻力,奋发向上、勇于斗争。
25、《矛与盾》:本文是一篇寓言故事,讲述了一个人同时夸耀自己所卖的矛和盾,因为互相抵触而不能自圆其说的故事,告诉人们说话办事要实事求是,不要言过其实,自相矛盾。
26、《一个这样的老师》:本文记叙了怀特森老师利用“故弄玄虚”法教给学生“新怀疑主义”方法的故事,表现了他别具一格的教学方式对我的深远影响和对老师的敬佩之情。
27、《可爱的*》:本文通过对伟大祖国壮丽河山的描述和对侵略者的鞭挞,表达了一个*人的赤子情怀和远大抱负。
28、联系上下文,说说下面句子的意思。
29、《匆匆》的作者是朱自清,他的作品还有《绿》、《背影》。的特点:一是结构精巧,层次清楚,转承自然,首尾呼应;二是文字清秀隽永,纯朴简练;三是情景交融,无论是写燕子、杨柳、桃花,还是写太阳,都与"我们的日子为什么一去不复返呢"的感叹融为一体,处处流露出作者对时光流逝感到无奈和惋惜。
30、用关联词造句: