1、线段的中点:
2、角的表示
3、角的度量
4、角的*分线
5、方程
6、等式的性质
7、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
8、扇形统计图
9、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
10、两直线*行的条件:(角的关系线的*行)
11、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
12、事件的分类:,会求各种事件的概率
13、必然事件不可能事件,不确定事件
14、C
15、ADBCADBC180°—∠1—∠2∠3+∠4
16、证明:
17、有,AB∥CD
18、如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.
19、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。
20、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
21、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
22、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.
23、有理数加法的运算律:
24、有理数乘方的法则:
25、混合运算法则:先乘方,后乘除,最后加减.
26、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
27、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
28、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
31、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(
32、同级运算,从左到右进行。
33、系数;一个单项式中,数字因数叫做这个单项式的系数。
34、多项式:几个单项式的和叫做多项式。
35、项:组成多项式的每个单项式叫做多项式的项。
36、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
37、π是常数,因此也可以作为系数。它不是未知数。
38、整数和分数统称为有理数(rational number)。
39、有理数中仍然有:乘积是1的两个数互为倒数。
40、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
41、把多项式中的同类项合并成一项,叫做合并同类项。
42、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
43、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
44、把等式一边的某项变号后移到另一边,叫做移项。
45、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
46、几何体简称为体(solid)。
47、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
48、角∠(angle)也是一种基本的几何图形。
49、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
50、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
——七年级数学下册知识点总结 50句菁华
1、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
2、按定义分类:2.按性质符号分类:
3、有效数字:
4、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
5、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
11、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
12、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
13、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
14、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
15、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
16、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
17、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
18、垂直三要素:垂直关系,垂直记号,垂足
19、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
20、1.2
21、4*移
22、1.1有序数对
23、1.2*面直角坐标系
24、点、线、面、体
25、整数:正整数、0、负整数,统称整数。
26、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
27、单独的一个数字是单项式,它的系数是它本身。
28、多项式没有系数的概念,但有次数的概念。
29、整式不一定是多项式。
30、此法则也可以逆用,即:amn =(am)n=(an)m。
31、此法则也可以逆用,即:anbn=(ab)n。
32、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
33、系数相乘时,注意符号。
34、*方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
35、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
36、命题:判断一件事情的语句叫命题。
37、无理数
38、绝对值
39、实数与数轴上点的关系:
40、3三角形的稳定性
41、1三角形的内角
42、1多边形
43、*行公理:
44、三角形中的主要线段:
45、多边形的内角和:
46、提公因式法. 关键:找出公因式
47、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
48、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
49、不等式的解集在数轴上表示:
50、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
——七年级上册数学知识点 30句菁华
1、2 有理数
2、3 有理数的加减法
3、同号两数相加,取相同的符号,并把绝对值相加。
4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
5、整数和分数统称为有理数(rational number)。
6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
9、两个负数,绝对值大的反而小。
10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
12、有理数中仍然有:乘积是1的两个数互为倒数。
13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
21、角∠(angle)也是一种基本的几何图形。
22、几何图形的投影问题
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
27、不含字母的项叫做常数项。
28、单项式和多项式统称为整式。
29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
——中考七年级数学知识点 30句菁华
1、每个单项式叫做多项式的项。
2、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
3、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).
4、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
5、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
6、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
7、有理数乘法法则
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
10、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).
12、射线的特征:“向一方无限延伸,它有一个端点。”
13、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
14、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
15、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
16、先看笔记后做作业。
17、科学的记录笔记
18、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
19、垂直三要素:垂直关系,垂直记号,垂足
20、垂直公理:过一点有且只有一条直线与已知直线垂直。
21、垂线段最短。
22、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
23、*行线的性质:
24、无理数
25、绝对值
26、实数与数轴上点的关系:
27、*方根
28、列方程是解决问题的重要方法,利用方程可以解出未知数。
29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
30、把多项式中同类项合成一项,叫做合并同类项。
——数学知识点 100句菁华
1、公式。(每两个相邻的时间单位之间的进率是60)
2、①相同分母的分数相加、减:分母不变,只和分子相加、减。
3、利用等底等高的两个三角形面积相等。
4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6、有理数乘法法则:
7、乘方的定义:
8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
14、圆方程
15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
16、被除数÷除数=商
17、被除数=商×除数
18、从个位加起;
19、个位不够减从十位退1,在个位加10再减。
20、末位不管有几个0都不读。
21、角
22、(1)什么是互相垂直?什么是垂线?什么是垂足?
23、加法意义和运算定律
24、什么是被减数?什么是减数?什么叫差?
25、乘法
26、什么是单名数?
27、什么是有限小数?
28、什么是质数(或素数)?
29、什么是分解质因数?
30、怎么比较分数大小?
31、圆的周长总是直径的三倍多一些。
32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
33、求比一个数多(或少)几分之几的数是多少的解题方法
34、亿以内的数的认识:
35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
36、学生在动手操作中,可以画出并能计算出图形的周长。
37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、推论 三角形两边的差小于第三边
41、推论2 三角形的一个外角等于和它不相邻的两个内角的和
42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
44、直角三角形斜边上的中线等于斜边上的一半
45、矩形判定定理2 对角线相等的*行四边形是矩形
46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角
47、菱形判定定理2 对角线互相垂直的*行四边形是菱形
48、正方形性质定理1 正方形的四个角都是直角,四条边都相等
49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
50、等腰梯形的两条对角线相等
51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
52、不含任何元素的集合叫做空集,记为
53、一个加数=和+另一个加数
54、商中间或末尾有0的除法:
55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)
57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
59、比值通常用分数、小数和整数表示。
60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
63、当1和任何字母相乘时,“ 1” 省略不写.
64、检验,写答语
65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
68、知识点概述
69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
70、数学名词。一组具有某种共同性质的数学元素:有理数的~。
71、判断函数奇偶性忽略定义域致误
72、函数零点定理使用不当致误
73、忽视三视图中的实、虚线致误
74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a
76、2空间几何体的三视图和直观图
77、判断两*面*行的方法有三种:
78、3.1直线与*面垂直的判定
79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.
80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
81、被开方数一定是非负数.
82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
83、整式与分式
84、一元二次方程的二次函数的关系
85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
87、*行四边形判定定理4
88、矩形性质定理2
89、菱形判定定理1
90、正方形性质定理1
91、等腰梯形判定定理
92、性质定理1
93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
96、切线长定理
97、圆的外切四边形的两组对边的和相等
98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
99、扇形面积公式:S扇形=n兀R^2/360=LR/2
100、列方程解应用题的常用公式:
——五年级上册数学知识点 60句菁华
1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
2、理解用字母表示数的意义和作用;
3、理解简易方程的意思及其解法;
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、计算小数乘法末尾对齐,按整数乘法法则进行计算。
7、把因数的位置交换相乘
8、三角形面积=底×高÷2字母公式:s=ah÷2
9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
10、重叠法;
11、公式计算面积法;
12、正方形周长=边长×4 C = 4 a
13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
14、1*方米=100*方分米=10000*方厘米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、因数末尾有几个0,就在积的末尾添上几个0。
17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
20、长方形的面积=长×宽:S=ab。
21、长方形的周长=(长+宽)×2 C=(a+b)×2
22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
23、直径=半径×2 d=2r半径=直径÷2 r= d÷2
24、长方体的体积=长×宽×高公式:V = abh
25、长方体(或正方体)的体积=底面积×高公式:V = abh
26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。
28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
31、所有的方程都是等式,但等式不一定都是方程。
32、三角形面积公式推导:旋转
33、等底等高的*行四边形面积相等;
34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。
35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
36、封闭图形一周的长度,就是它的周长。
37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223
39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。
40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
41、只有1个因数。“1”既不是质数,也不是合数。
42、表示相等关系的式子叫做等式。
43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
45、1992所有的质因数的和是( 88 )。
46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?
48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?
49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
50、<<1,□里可以填的自然数有( )。[写出所有可能]
51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
52、在实际应用中,小数除法所
53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)
55、长方形里最大的圆。两者联系:宽=直径
56、同一个圆内的所有线段中,圆的直径是最长的。
57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84
58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5
59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
60、半圆的面积是圆面积的一半。S半圆=r22
——中考数学知识点 50句菁华
1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
2、直角坐标系中,点A(3,0)在轴上。
3、直角坐标系中,点A(-2,3)在第四象限。
4、直角坐标系中,点A(-2,1)在第二象限。
5、数据1,2,3,4,5的中位数是3.
6、cs30°=。
7、sin260°+cs260°=1.
8、tan45°=1.
9、任意一个三角形一定有一个外接圆。
10、同圆或等圆的半径相等。
11、经过圆心*分弦的直径垂直于弦。
12、非负数:正实数与零的统称。(表为:x≥0)
13、相反数:①定义及表示法
14、奇数、偶数、质数、合数(正整数-自然数)
15、单项式与多项式
16、系数与指数
17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
19、科学记数法:(1≤a<10,n是整数=
20、个体:总体中每一个考察对象。
21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
24、一次函数
25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
27、圆的定义(两种)
28、正多边形及计算
29、圆柱、圆锥的侧面展开图及相关计算
30、作法与图形:通过如下3个步骤
31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。
32、抛物线是轴对称图形。对称轴为直线
33、一次项系数b和二次项系数a共同决定对称轴的位置。
34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。
35、用待定系数法求二次函数的解析式
36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
37、见直径往往作直径上的'圆周角
38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
40、(P11)小数四则运算顺序跟整数是一样的。
41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
43、方程的解是一个数;
44、长方形框架拉成*行四边形,周长不变,面积变小。
45、5 4 0 0 1
46、重心是三角形内到三边距离之积最大的点。
47、sin260+ cos260= 1.
48、tan45= 1.
49、cos60+ sin30= 1.
50、直角三角形两个锐角互余。
——二年级上册数学知识点 50句菁华
1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。
2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。
3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。
5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
7、万以内数的读法和写法与1000以内的数读法和写法相同。
8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。
9、“有余数除法”的复习。
10、“方向和路线”的复习。
11、“万以内的加、减法”的复习。
12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
13、实数
14、轴对称与坐标变化
15、一次函数与正比例函数
16、用二元一次方程组确定一次函数表达式
17、从统计图分析数据的集中趋势
18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。
19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
22、差=被减数—减数
23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
24、56页例5
25、探索并掌握两位数减两位数不退位)的计算方法。
26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。
28、渗透统计的思想和方法。
29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
31、厘米和米
32、笔算减法
33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。
34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;
35、观察物体时,要抓住物体的特征来判断。
36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;
37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
40、同分母分数的加减法。(分母不变,分子相加或相减。)
41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点
42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。
43、三角形的面积=底×高÷2:S=ah÷2。
44、长方体的体积=长×宽×高:V=abh。
45、圆柱的侧面积=底面圆的周长×高:S=ch。
46、常用的长度单位:米、厘米。
47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
48、差=被减数-减数
49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
50、乘法算式的写法和读法
——五年级上册数学知识点 50句菁华
1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、用计算器来验算
6、有限小数:小数部分的位数是有限的小数,叫做有限小数。
7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
8、长方形面积=长×宽字母公式:s=ab
9、组合图形:转化成已学的简单图形,通过加、减进行计算。
10、重叠法;
11、分割*移法;
12、公式计算面积法;
13、三角形面积=底×高÷2(s三=ah÷2)
14、1*方千米=100公顷=1000000*方米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、求近似数的方法一般有三种:(P10)
17、(P11)小数四则运算顺序跟整数是一样的。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、(关于“大约)应用题:
20、圆柱的侧面积=底面圆的周长×高:S=ch。
21、长方形的周长=(长+宽)×2:C=(a+b)×2。
22、*行四边形的面积=底×高:S=ah。
23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。
24、圆的面积=圆周率×半径×半径:s=πr2。
25、三角形的面积=底×高÷2 S=ah÷2
26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
31、所有的方程都是等式,但等式不一定都是方程。
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
33、身份证码: 18 位
34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
35、可以表示起点
36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
38、表示相等关系的式子叫做等式。
39、方程一定是等式;等式不一定是方程。等式>方程
40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?
43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
44、求近似数的方法一般有三种:
45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
46、除法中的变化规律:
47、有些事件的发生是确定的,有些是不确定的。 可能
48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
49、正方形里最大的圆。两者联系:边长=直径
50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——七年级下册数学第二单元知识点整理归纳 30句菁华
1、点到直线的距离:直线外一点到这条直线的垂线段的长度。
2、*行公理:过直线外一点有且只有一条直线与已知直线*行。
3、*行线的判定。
4、∠BED∠DFC∠AFD∠DAF
5、证明:
6、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
7、*行,证明如下:
8、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
9、两条直线被第三条直线所截:
10、垂线段最短。
11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
12、*移:①*移前后的两个图形形状大小不变,位置改变。②对应点的线段*行且相等。
13、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
14、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
15、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
16、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
17、任意一个三角形两角*分线的夹角=90+第三角的一半。
18、钝角三角形有两条高在外部。
19、三条边分别对应相等的两个三角形全等。
20、两条直角边对应相等的两个直角三角形全等。
21、两个能够重合的图形称为全等图形。
22、全等图形的性质:全等图形的形状和大小都相同。
23、全等三角形
24、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
25、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间
26、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
27、数学公式一定要记熟,并且还要会推导,能举一反三。
28、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
29、关于三角形的概念及其按角的分类
30、保持好心态