七年级下册数学知识点总结 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学,知识点总结

1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

12、两条直线被第三条直线所截:

13、垂直公理:过一点有且只有一条直线与已知直线垂直。

14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

15、*行线的性质:

16、*面上不相重合的两条直线之间的位置关系为_______或________

17、倒数

18、大于0的数叫做正数(positive number)。

19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

20、有理数减法法则

21、有理数中仍然有:乘积是1的两个数互为倒数。

22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

25、根据有理数的乘法法则可以得出

26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

30、包围着体的是面(surface),面有*的面和曲的面两种。

31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

32、角∠(angle)也是一种基本的几何图形。

33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角

34、等角的补角相等,等角的余角相等。

35、相反数的几何意义

36、相反数的表示方法

37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

40、整式加减的一般步骤:


七年级下册数学知识点总结 40句菁华扩展阅读


七年级下册数学知识点总结 40句菁华(扩展1)

——七年级下册数学知识点总结归纳 40句菁华

1、对于数轴上的任意两个点,靠右边的点所表示的数较大.

2、乘法

3、都是数字与字母的乘积的代数式叫做单项式。

4、多项式中的每一个单项式叫做多项式的项。

5、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

6、代数式求值的一般步骤:

7、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

8、共同点:

9、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

10、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

11、积是一个多项式,其项数与多项式的项数相同。

12、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

13、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

14、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

15、整式的乘除的公式运用(六条)及逆运用(数的计算)。

16、互为余角和互为补角和

17、两直线*行的条件:(角的关系线的*行)

18、三角形

19、常见的轴对称图形有:

20、尺规作图:

21、实数的分类、正有理数、有理数零有限小数和无限循环小数

22、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

23、点到直线的距离:直线外一点到这条直线的垂线段的长度。

24、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

25、*行线的性质:

26、*移:①*移前后的两个图形形状大小不变,位置改变。②对应点的线段*行且相等。

27、命题:判断一件事情的语句叫命题。

28、必然事件发生的概率为1,记作P(必然事件)=1;

29、三角形中三角的关系

30、三角形的'三条重要线段

31、三角形的中线把这个三角形分成面积相等的两个三角形

32、能够完全重合的两个图形是全等图形。

33、三个角对应相等的两个三角形不一定全等。

34、一条斜边和一直角边对应相等的两个三角形全等。

35、全等图形的性质:全等图形的形状和大小都相同。

36、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

37、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

38、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

39、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

40、利用关系式:首先求出关系式,然后直接代入求值即可。


七年级下册数学知识点总结 40句菁华(扩展2)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单独的一个数字是单项式,它的系数是它本身。

4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

5、单项式的系数包括它前面的符号。

6、单项式的系数是带分数时,应化成假分数。

7、单项式的系数是1或―1时,通常省略数字“1”。

8、几个单项式的和叫做多项式。

9、一个多项式有几项,就叫做几项式。

10、多项式中次数最高的项的次数,叫做这个多项式的次数。

11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

15、此法则也可以逆用,即:amn =(am)n=(an)m。

16、此法则也可以逆用,即:anbn=(ab)n。

17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

19、相同字母的幂相乘时,底数不变,指数相加。

20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

22、单项式与单项式、多项式相乘的.法则。

23、三角形

24、常见的轴对称图形有:

25、(1)等腰三角形:对称轴,性质

26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。

30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。

31、垂直三要素:垂直关系,垂直记号,垂足

32、垂直公理:过一点有且只有一条直线与已知直线垂直。

33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

35、命题:判断一件事情的语句叫命题。

36、无理数

37、相反数

38、实数与数轴上点的关系:

39、算术*方根

40、注重预习培养自学能力


七年级下册数学知识点总结 40句菁华(扩展3)

——七年级上册数学知识点 30句菁华

1、2 有理数

2、3 有理数的加减法

3、同号两数相加,取相同的符号,并把绝对值相加。

4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

5、整数和分数统称为有理数(rational number)。

6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

9、两个负数,绝对值大的反而小。

10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

12、有理数中仍然有:乘积是1的两个数互为倒数。

13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

18、把等式一边的某项变号后移到另一边,叫做移项。

19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

21、角∠(angle)也是一种基本的几何图形。

22、几何图形的投影问题

23、线段、射线、直线的表示方法

24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

27、不含字母的项叫做常数项。

28、单项式和多项式统称为整式。

29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。


七年级下册数学知识点总结 40句菁华(扩展4)

——五年级上册数学知识点 50句菁华

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


七年级下册数学知识点总结 40句菁华(扩展5)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


七年级下册数学知识点总结 40句菁华(扩展6)

——初中七年级数学知识点 50句菁华

1、线段的中点:

2、角的表示

3、角的度量

4、角的*分线

5、方程

6、等式的性质

7、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

8、扇形统计图

9、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

10、两直线*行的条件:(角的关系线的*行)

11、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

12、事件的分类:,会求各种事件的概率

13、必然事件不可能事件,不确定事件

14、C

15、ADBCADBC180°—∠1—∠2∠3+∠4

16、证明:

17、有,AB∥CD

18、如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.

19、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。

20、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

21、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

22、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

23、有理数加法的运算律:

24、有理数乘方的法则:

25、混合运算法则:先乘方,后乘除,最后加减.

26、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

27、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

28、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

30、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

31、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(

32、同级运算,从左到右进行。

33、系数;一个单项式中,数字因数叫做这个单项式的系数。

34、多项式:几个单项式的和叫做多项式。

35、项:组成多项式的每个单项式叫做多项式的项。

36、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

37、π是常数,因此也可以作为系数。它不是未知数。

38、整数和分数统称为有理数(rational number)。

39、有理数中仍然有:乘积是1的两个数互为倒数。

40、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

41、把多项式中的同类项合并成一项,叫做合并同类项。

42、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

43、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

44、把等式一边的某项变号后移到另一边,叫做移项。

45、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

46、几何体简称为体(solid)。

47、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

48、角∠(angle)也是一种基本的几何图形。

49、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

50、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary

相关词条