1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、两条直线被第三条直线所截:
13、垂直公理:过一点有且只有一条直线与已知直线垂直。
14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
15、*行线的性质:
16、*面上不相重合的两条直线之间的位置关系为_______或________
17、倒数
18、大于0的数叫做正数(positive number)。
19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
20、有理数减法法则
21、有理数中仍然有:乘积是1的两个数互为倒数。
22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
25、根据有理数的乘法法则可以得出
26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
30、包围着体的是面(surface),面有*的面和曲的面两种。
31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
32、角∠(angle)也是一种基本的几何图形。
33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
34、等角的补角相等,等角的余角相等。
35、相反数的几何意义
36、相反数的表示方法
37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
40、整式加减的一般步骤:
——七年级下册数学知识点总结归纳 40句菁华
1、对于数轴上的任意两个点,靠右边的点所表示的数较大.
2、乘法
3、都是数字与字母的乘积的代数式叫做单项式。
4、多项式中的每一个单项式叫做多项式的项。
5、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
6、代数式求值的一般步骤:
7、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
8、共同点:
9、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
10、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
11、积是一个多项式,其项数与多项式的项数相同。
12、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
13、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
14、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
15、整式的乘除的公式运用(六条)及逆运用(数的计算)。
16、互为余角和互为补角和
17、两直线*行的条件:(角的关系线的*行)
18、三角形
19、常见的轴对称图形有:
20、尺规作图:
21、实数的分类、正有理数、有理数零有限小数和无限循环小数
22、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
23、点到直线的距离:直线外一点到这条直线的垂线段的长度。
24、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
25、*行线的性质:
26、*移:①*移前后的两个图形形状大小不变,位置改变。②对应点的线段*行且相等。
27、命题:判断一件事情的语句叫命题。
28、必然事件发生的概率为1,记作P(必然事件)=1;
29、三角形中三角的关系
30、三角形的'三条重要线段
31、三角形的中线把这个三角形分成面积相等的两个三角形
32、能够完全重合的两个图形是全等图形。
33、三个角对应相等的两个三角形不一定全等。
34、一条斜边和一直角边对应相等的两个三角形全等。
35、全等图形的性质:全等图形的形状和大小都相同。
36、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
37、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
38、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
39、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
40、利用关系式:首先求出关系式,然后直接代入求值即可。
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单独的一个数字是单项式,它的系数是它本身。
4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
5、单项式的系数包括它前面的符号。
6、单项式的系数是带分数时,应化成假分数。
7、单项式的系数是1或―1时,通常省略数字“1”。
8、几个单项式的和叫做多项式。
9、一个多项式有几项,就叫做几项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
15、此法则也可以逆用,即:amn =(am)n=(an)m。
16、此法则也可以逆用,即:anbn=(ab)n。
17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
19、相同字母的幂相乘时,底数不变,指数相加。
20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
22、单项式与单项式、多项式相乘的.法则。
23、三角形
24、常见的轴对称图形有:
25、(1)等腰三角形:对称轴,性质
26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。
30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
31、垂直三要素:垂直关系,垂直记号,垂足
32、垂直公理:过一点有且只有一条直线与已知直线垂直。
33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
35、命题:判断一件事情的语句叫命题。
36、无理数
37、相反数
38、实数与数轴上点的关系:
39、算术*方根
40、注重预习培养自学能力
——七年级上册数学知识点 30句菁华
1、2 有理数
2、3 有理数的加减法
3、同号两数相加,取相同的符号,并把绝对值相加。
4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
5、整数和分数统称为有理数(rational number)。
6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
9、两个负数,绝对值大的反而小。
10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
12、有理数中仍然有:乘积是1的两个数互为倒数。
13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
21、角∠(angle)也是一种基本的几何图形。
22、几何图形的投影问题
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
27、不含字母的项叫做常数项。
28、单项式和多项式统称为整式。
29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
——七年级生物上册知识点 60句菁华
1、分析和综合的方法。
2、环境对生物的影响
3、生态系统的概念:在一定区域内,与形成的统一的整体物链积累。
4、草原生态系统、淡水生态系统、湿地生态系统、城市生态系统等
5、写出显微镜各部分的结构及作用
6、观察的物像与实际图像若所需物像在视野的左上方,要想移到视野中央,则应该往左上方方移。
7、放在显微镜下观察的生物标本,应该,光线能透过,才能观察清楚。因此必须加工制成玻片标本。
8、小明在显微镜的视野中看到一个“F”,那么,玻片上写的是___________。
9、植物的四大组织:
10、生物圈是所有生物的家
11、生态系统的概念:在一定地域内,生物与环境所形成的统一整体叫生态系统。一片森林,一块农田,一片草原,一个湖泊,等都可以看作一个生态系统。
12、植物细胞的基本结构细胞壁:支持、保护
13、植物细胞与动物细胞的不同点:植物细胞有细胞壁、液泡、叶绿体,动物细胞没有。
14、动物和人的结构层次(小到大):细胞→组织→器官→系统→动物体和人体
15、病毒的种类
16、种子植物比藻类、苔藓、蕨类更适应陆地的生活,其中一个重要的原因是能产生种子。
17、生长最快根的生长:一方面靠分生区细胞分裂增加细胞的数量,一方面要靠伸长区细胞体积的增大。
18、显微镜:
19、生物的生活需要营养
20、科学探究常需要进行对照实验,对照实验中除了实验变量不同外,其他因素都相同(即实验变量是的)。探究中要坚持实事求是的科学态度。
21、生物圈为生物生活提供的基本条件:营养物质、阳光、空气、水、适宜的温度、一定的生存空间。
22、细胞核:(贮存并传递遗传信息。——“管理和调控部门”)。
23、植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核、线粒体。
24、生物圈是最大的生态系统。人类活动对环境的影响有许多是全球性的。
25、种子的主要部分是胚,胚是新植物体的幼体,在玉米种子的剖面滴加碘液,变蓝的是胚乳,因为胚乳内有淀粉,淀粉遇碘变蓝色。
26、细胞核分裂时,染色体的变化最明显。分裂结束,两个新细胞的染色体形态和数目相同,新细胞与原细胞的染色体形态和数目也相同;遗传物质也是一样的。
27、观察的物像与实际图像相反。注意玻片的移动方向和视野中物象的移动方向相反。
28、切片、涂片、装片的区别P42
29、基因是DNA上的一个具有特定遗传信息的片断
30、生态系统具有一定的自动调节能力
31、植物的组织:分生组织、保护组织、营养组织、输导组织等
32、苔藓植物对二氧化硫等有毒气体十分敏感,在污染严重的城市和工厂附近很难生存。人们利用这个特点,把苔藓植物当作监测空气污染程度的指示植物。
33、种子的萌发环境条件:适宜的温度、一定的水分、充足的空气
34、单向流动逐级递减
35、淋巴因子的成分是糖蛋白
36、根的生长一方面靠分生区增加细胞的数量,一方面要靠伸长区细胞体积的增大。
37、芽中有分生组织,种子萌发时,胚芽发育成幼苗的茎和叶。幼苗形成后,茎、叶、花都是由芽发育而成的。枝条由叶芽发育而成,花由花芽发育而成。
38、尿素是有机物,氨基酸完全氧化分解时产生有机物
39、高度分化的细胞一般不增殖。例如:肾细胞
40、手语是一钟镅裕?揽渴泳踔惺嗪陀镅灾惺?/SPAN>
41、原核细胞较真核细胞简单细胞内仅具有一种细胞器——核糖体,细胞内具有两种核酸——脱氧核酸和核糖核酸
42、秋水仙素既能诱导基因突变又能诱导染色体数量加倍(这跟剂量有关)
43、用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八
44、分裂间期与蛋白质合成有关的细胞器有核糖体,线粒体,没有高尔基体和内质网。
45、*卵靠近珠孔
46、高等动物发育包括胚胎发育和胚后发育两个阶段前一个阶段中关键的时期是原肠胚时期其主要特点是具有内胚层、中胚层、外胚层并形成原肠胚和囊胚腔两个腔
47、细胞免疫阶段靶细胞渗透压升高
48、水分过多或过少都会影响生物的生长和发育
49、胞内酶(例如:呼吸酶)组织酶(例如:消化酶)不在内环境中
50、低血糖:40~60mg正常:80~120mgdL
51、mRNA→一条DNA单链→双链DNA分子
52、种内互助:同种生物生活在一起,通力合作,共同维护群体的生存。如:群聚的生活的某些生物,聚集成群,对捕食和御敌是有利的。
53、适应的普遍性:植物对环境的适应,动物对环境的适应,外形的适应性特征。
54、染色体进行复制
55、植物细胞:在原细胞中间形成新的细胞膜和细胞壁
56、测定种子的发芽率(会计算)和抽样检测
57、花的结构(课本102)
58、绿色植物的生活需要水
59、天竺葵的实验
60、绿色植物通过光合作用,不断消耗大气中的二氧化碳,产生氧气,维持了生物圈中的碳氧*衡。
——初中数学知识点总结 50句菁华
1、同角或等角的余角相等——余角=90-角度。
2、推论1
3、推论2
4、*行四边形性质定理3
5、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
6、点、线、面、体
7、生活中的立体图形
8、线段的性质
9、角的度量
10、①直线L和⊙O相交
11、切线的性质定理
12、有理数减法:减去一个数,等于加上这个数的相反数。
13、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
14、内公切线长=d-(R-r)
15、高线、中线、角*分线的意义和做法
16、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
17、直角三角形中,30°角所对的直角边等于斜边的一半。
18、多边形的内角:多边形相邻两边组成的角叫做它的内角。
19、公式与性质
20、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
21、推论2经过切点且垂直于切线的直线必经过圆心
22、扇形面积公式:S扇形=n兀R^2/360=LR/2
23、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
24、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
25、函数图象的最低点和最高点.
26、在正数前面加上负号“-”的数叫做负数。
27、邻边相等的矩形。
28、过一点有且只有一条直线和已知直线垂直。
29、推论2三角形的一个外角等于和它不相邻的两个内角的和。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合。
32、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合。
33、*行四边形性质定理1*行四边形的对角相等。
34、矩形判定定理1有三个角是直角的四边形是矩形。
35、菱形判定定理1四边都相等的四边形是菱形。
36、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
37、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
38、圆是定点的距离等于定长的点的集合。
39、定理一条弧所对的圆周角等于它所对的圆心角的一半。
40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
41、推论2经过切点且垂直于切线的直线必经过圆心。
42、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
43、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
44、运算法则(加、减、乘、除、乘方、开方)
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
47、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
48、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
49、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
50、不等式的解法:
——初中七年级数学知识点 50句菁华
1、线段的中点:
2、角的表示
3、角的度量
4、角的*分线
5、方程
6、等式的性质
7、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
8、扇形统计图
9、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
10、两直线*行的条件:(角的关系线的*行)
11、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
12、事件的分类:,会求各种事件的概率
13、必然事件不可能事件,不确定事件
14、C
15、ADBCADBC180°—∠1—∠2∠3+∠4
16、证明:
17、有,AB∥CD
18、如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.
19、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。
20、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
21、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
22、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.
23、有理数加法的运算律:
24、有理数乘方的法则:
25、混合运算法则:先乘方,后乘除,最后加减.
26、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
27、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
28、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
31、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(
32、同级运算,从左到右进行。
33、系数;一个单项式中,数字因数叫做这个单项式的系数。
34、多项式:几个单项式的和叫做多项式。
35、项:组成多项式的每个单项式叫做多项式的项。
36、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
37、π是常数,因此也可以作为系数。它不是未知数。
38、整数和分数统称为有理数(rational number)。
39、有理数中仍然有:乘积是1的两个数互为倒数。
40、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
41、把多项式中的同类项合并成一项,叫做合并同类项。
42、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
43、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
44、把等式一边的某项变号后移到另一边,叫做移项。
45、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
46、几何体简称为体(solid)。
47、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
48、角∠(angle)也是一种基本的几何图形。
49、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
50、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
——高中数学知识点总结 50句菁华
1、在的导数。
2、建立适当的坐标系,设出动点M的坐标;
3、充要条件。
4、函数的单调性;
5、等差数列前n项和公式;
6、弧度制;
7、正弦函数、余弦函数的图象和性质;
8、函数的奇偶性;
9、已知三角函数值求角;
10、线段的定比分点;
11、不等式的基本性质;
12、含绝对值的不等式。
13、直线方程的点斜式和两点式;
14、两条直线的交角;
15、由已知条件列出曲线方程;
16、双曲线的简单几何性质;
17、抛物线的简单几何性质。
18、直线和*面垂直的判定与性质;
19、两个*面的位置关系;
20、两个*面垂直的判定和性质;
21、棱柱;
22、排列;
23、组合数的两个性质;
24、随机事件的概率;
25、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
26、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
27、函数的三要素是什么?如何比较两个函数是否相同?
28、空间点、直线、*面之间的位置关系:
29、异面直线:
30、解决不等式的有关问题:
31、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫
32、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
33、不在同一直线上的3个点确定一个圆。
34、扇形弧长l=nπr/180
35、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
36、等差数列的前n项和公式:Sn=
37、等差数列{an}中,若m+n=p+q,则
38、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
39、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.
40、集合的表示:(1){?}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4
41、“包含”关系—子集注意:A?B有两种可能
42、不含任何元素的集合叫做空集,记为Φ
43、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}。
44、常用的函数表示法:解析法:图象法:列表法:
45、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。
46、棱锥S—h—高V=Sh/3。
47、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
48、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。
49、函数的三要素:定义域、值域、对应关系.这是判断两个函数是否为同一函数的依据.
50、等比数列性质
——数学知识点总结 40句菁华
1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
3、2.1直线与*面*行的判定
4、2.2*面与*面*行的判定
5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
6、2.3—2.2.4直线与*面、*面与*面*行的性质
7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
8、定理:垂直于同一个*面的两条直线*行。
9、Venn图:
10、“相等”关系:A=B(5≥5,且5≤5,则5=5)
11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.
12、圆的外部可以看作是圆心的距离大于半径的点的集合
13、到已知角的两边距离相等的点的轨迹,是这个角的*分线
14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
15、定理不在同一直线上的三点确定一个圆。
16、圆是以圆心为对称中心的中心对称图形
17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
19、切线的性质定理:圆的切线垂直于经过切点的半径
20、弦切角定理:弦切角等于它所夹的弧对的圆周角
21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
22、弧长计算公式:L=n兀R/180
23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
25、圆方程
26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
30、集合的分类:有限集,无限集,空集。
31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
32、根据自变量的取值范围对函数进行分段.
33、空间中的*行问题
34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
35、忽视集合元素的三性致误
36、函数的单调区间理解不准致误
37、三角函数的单调性判断致误
38、对数列的定义、性质理解错误
39、数列中的最值错误
40、忽视三视图中的实、虚线致误
——高三数学知识点总结 40句菁华
1、证明线面位置关系,一般不需要去建系,更简单;
2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
3、求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;
4、“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
5、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.
6、单调性和奇偶性
7、等差数列中
8、数列求和的常用方法:
9、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角
10、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
11、两非零向量*行(共线)的充要条件
12、*面向量的基本定理:如果e1和e2是同一*面内的两个不共线向量,那么对该*面内的任一向量a,有且只有一对实数,使a= e1+ e2.
13、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
14、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
15、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.
16、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱*行六面体
17、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
18、多项式函数的导数与函数的单调性
19、导数与极值、导数与最值:
20、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
21、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
22、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
23、复合函数的有关问题
24、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
25、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
26、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
27、棱锥
28、拟柱体
29、直圆锥
30、球缺
31、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
32、注意计数时利用列举、树图等基本方法;
33、注意放回抽样,不放回抽样;
34、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
35、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
36、函数值域的求法:
37、圆柱体:
38、写出点M的集合;
39、立体几何(1)、证明:垂直(多考查面面垂直)、*行
40、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
——七年级英语上册各单元知识点 30句菁华
1、like to do sth.喜欢/想要做某事(表一次性或特指的某一具体的动作)
2、名词的分类
3、many修饰可数名词 many boys many bananas
4、how many/how much
5、Can I help you? 我能帮助你吗?
6、want sth 想要某物 1)我想要个苹果。
7、表感谢的用语:Thank you / Thank you very much / Thanks / Thanks a lot / Many thanks.
8、Come and buy your clothes at our great sale! 我们在大甩卖,快来买衣服!
9、come and do sth 来做某事
10、months: 月份:
11、基数词变序数词口诀:
12、in表在某一周/月/季节/年/世纪等。
13、be busy with sth / be busy doing sth 忙于做某事
14、It’s Tuesday, November 11. 今天是11月11日,星期二。
15、be strict with sb. 对某人要求严格
16、Our English teacher is very strict with us.我们的英语老师对我们要求很严格。
17、Our English teacher is very strict in our homework.
18、look, see, watch, read
19、辨析interesting与interested
20、on weekends在周末
21、辨析speak,say, talk, tell
22、speak“说”,“讲话”。强调说的能力。
23、say“说”,后面跟说的内容。 I can say ABC.我会说ABC. say hello to sb.向某人问好。 say sorry to sb.向某人道歉。 say it in English用英语说(它)。
24、tell“告诉,讲述”。
25、be good with sb 和某人相处得好(同义get on well with sb.)
26、v. 帮助
27、辨析little, a little, few, a few
28、little, few表否定含义“几乎没有”,a little, a few表肯定含义“一点儿,少量”
29、what time / when
30、询问年份、月份、日期等非点时间时,只能用when,不能用what time。