1、每个单项式叫做多项式的项。
2、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
3、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).
4、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
5、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
6、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
7、有理数乘法法则
8、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
9、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
10、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
11、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).
12、射线的特征:“向一方无限延伸,它有一个端点。”
13、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
14、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
15、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
16、先看笔记后做作业。
17、科学的记录笔记
18、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
19、垂直三要素:垂直关系,垂直记号,垂足
20、垂直公理:过一点有且只有一条直线与已知直线垂直。
21、垂线段最短。
22、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
23、*行线的性质:
24、无理数
25、绝对值
26、实数与数轴上点的关系:
27、*方根
28、列方程是解决问题的重要方法,利用方程可以解出未知数。
29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
30、把多项式中同类项合成一项,叫做合并同类项。
——初中七年级数学知识点 50句菁华
1、线段的中点:
2、角的表示
3、角的度量
4、角的*分线
5、方程
6、等式的性质
7、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
8、扇形统计图
9、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
10、两直线*行的条件:(角的关系线的*行)
11、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
12、事件的分类:,会求各种事件的概率
13、必然事件不可能事件,不确定事件
14、C
15、ADBCADBC180°—∠1—∠2∠3+∠4
16、证明:
17、有,AB∥CD
18、如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.
19、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。
20、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
21、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
22、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.
23、有理数加法的运算律:
24、有理数乘方的法则:
25、混合运算法则:先乘方,后乘除,最后加减.
26、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
27、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
28、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
31、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(
32、同级运算,从左到右进行。
33、系数;一个单项式中,数字因数叫做这个单项式的系数。
34、多项式:几个单项式的和叫做多项式。
35、项:组成多项式的每个单项式叫做多项式的项。
36、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
37、π是常数,因此也可以作为系数。它不是未知数。
38、整数和分数统称为有理数(rational number)。
39、有理数中仍然有:乘积是1的两个数互为倒数。
40、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
41、把多项式中的同类项合并成一项,叫做合并同类项。
42、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
43、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
44、把等式一边的某项变号后移到另一边,叫做移项。
45、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
46、几何体简称为体(solid)。
47、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
48、角∠(angle)也是一种基本的几何图形。
49、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
50、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单独的一个数字是单项式,它的系数是它本身。
4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
5、单项式的系数包括它前面的符号。
6、单项式的系数是带分数时,应化成假分数。
7、单项式的系数是1或―1时,通常省略数字“1”。
8、几个单项式的和叫做多项式。
9、一个多项式有几项,就叫做几项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
15、此法则也可以逆用,即:amn =(am)n=(an)m。
16、此法则也可以逆用,即:anbn=(ab)n。
17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
19、相同字母的幂相乘时,底数不变,指数相加。
20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
22、单项式与单项式、多项式相乘的.法则。
23、三角形
24、常见的轴对称图形有:
25、(1)等腰三角形:对称轴,性质
26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。
30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
31、垂直三要素:垂直关系,垂直记号,垂足
32、垂直公理:过一点有且只有一条直线与已知直线垂直。
33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
35、命题:判断一件事情的语句叫命题。
36、无理数
37、相反数
38、实数与数轴上点的关系:
39、算术*方根
40、注重预习培养自学能力
——七年级上册数学知识点 30句菁华
1、2 有理数
2、3 有理数的加减法
3、同号两数相加,取相同的符号,并把绝对值相加。
4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
5、整数和分数统称为有理数(rational number)。
6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
9、两个负数,绝对值大的反而小。
10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
12、有理数中仍然有:乘积是1的两个数互为倒数。
13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
21、角∠(angle)也是一种基本的几何图形。
22、几何图形的投影问题
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
27、不含字母的项叫做常数项。
28、单项式和多项式统称为整式。
29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
——六年级上册数学知识点 60句菁华
1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。
2、0的绝对值是其本身。
3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
4、除0外,任何数的的0次方等于1。
5、已知单位“1”用乘法计算
6、积与因数的大小关系
7、被除数与商的大小关系
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、图上距离:实际距离=比例尺;
11、图上距离=实际距离×比例尺;
12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、圆内最长的线段是直径。(__)
15、几个直径和为n的圆的周长=直径为n的圆的周长
16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2
18、长方形里最大的圆。两者联系:宽=直径
19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。
20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。
21、生活中的百分率:
22、直接求一个数是另一个数的百分之几一个数÷另一个数
23、已知比一个数多百分之几的数是多少,求这个数
24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。
28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
32、小数与百分数互化的规则:
33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
34、分数应用题基本数量关系(把分数看成比)
35、画线段图:
36、如果两个数是互质数,它们的公因数就是1。
37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
38、因为零不能作除数,所以分数的分母不能为零。
39、乘法分配律:
40、减法的性质:
41、圆的面积=圆周率×半径×半径
42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)
46、根据比的基本性质,可以把比化成最简单的整数比。
47、化简比:
48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
50、使学生能在方格纸上用数对确定位置;
51、百分数的意义,求一个数是另一个数的百分之几的应用题;
52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
56、比和比例的联系:
57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO
——六年级数学上册知识点 60句菁华
1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
2、两个小数的比,向右移动小数点的位置。也是先化成整数比。
3、3 32
4、条形统计图:可以清楚的看出数据的多少
5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
10、被除数÷除数= 被除数/除数
11、因为零不能作除数,所以分数的分母不能为零。
12、乘法分配律:
13、整数减法计算法则:
14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
15、混合运算用梯等式计算,等号写在第一个数字的左下角。
16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
17、找单位“1”的方法
18、1的倒数是1,0没有倒数。
19、被除数与商的大小关系
20、20是25的几分之几? 20÷25=4/5
21、已知单位“1”用乘法,求单位“1”用除法;
22、工程问题
23、一个数乘分数的意义就是求一个数的几分之几是多少。
24、求一个数的几分之几是多少?(用乘法)
25、什么是速度?
26、求一个数的百分之几是多少。一个数(单位“1”)×百分率
27、已知一个数的百分之几是多少,求这个数。
28、常用统计图的优点:
29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
33、百分数应用:
34、圆的定义:
35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。
36、半径为1厘米的圆的周长是3.14厘米。(__)
37、这个月哪项出最多?支出了多少元?
38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
39、常见的百分率的计算方法:
40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)
43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
44、除数是整数的小数除法计算法则:
45、圆锥体
46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
47、化简比:化简之后结果还是一个比,不是一个数。
48、比和除法、分数的区别:
49、已知单位“1”的量用乘法。
50、画线段图:
51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
53、比和比例的意义:
54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
55、“数与形相结合”的思想
56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
57、圆的半径越长,这个圆就越大。(__)
58、画一个半径为1厘米的圆。
59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。
60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?
——七年级数学下册知识点总结 50句菁华
1、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
2、按定义分类:2.按性质符号分类:
3、有效数字:
4、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
5、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
11、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
12、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
13、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
14、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
15、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
16、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
17、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
18、垂直三要素:垂直关系,垂直记号,垂足
19、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
20、1.2
21、4*移
22、1.1有序数对
23、1.2*面直角坐标系
24、点、线、面、体
25、整数:正整数、0、负整数,统称整数。
26、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
27、单独的一个数字是单项式,它的系数是它本身。
28、多项式没有系数的概念,但有次数的概念。
29、整式不一定是多项式。
30、此法则也可以逆用,即:amn =(am)n=(an)m。
31、此法则也可以逆用,即:anbn=(ab)n。
32、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
33、系数相乘时,注意符号。
34、*方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
35、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
36、命题:判断一件事情的语句叫命题。
37、无理数
38、绝对值
39、实数与数轴上点的关系:
40、3三角形的稳定性
41、1三角形的内角
42、1多边形
43、*行公理:
44、三角形中的主要线段:
45、多边形的内角和:
46、提公因式法. 关键:找出公因式
47、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
48、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
49、不等式的解集在数轴上表示:
50、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
——八年级上册数学知识点 50句菁华
1、全等图形:能够完全重合的两个图形就是全等图形。
2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、边边边公理(SSS)有三边对应相等的两个三角形全等
4、定理2到一个角的两边的距离相同的点,在这个角的*分线上
5、推论1等腰三角形顶角的*分线*分底边并且垂直于底边
6、推论1三个角都相等的三角形是等边三角形
7、定理1关于某条直线对称的两个图形是全等形
8、逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称
9、推论夹在两条*行线间的*行线段相等
10、矩形判定定理1有三个角是直角的四边形是矩形
11、菱形判定定理2对角线互相垂直的*行四边形是菱形
12、定理1关于中心对称的两个图形是全等的
13、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
14、与一条线段两个端点距离相等的点,在线段的垂直*分线上
15、三角形三条边的垂直*分线相交于一点,这个点到三角形三个顶点的距离相等
16、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
17、等边三角形的判定:
18、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
19、定理1 在角的*分线上的点到这个角的两边的距离相等
20、推论3 等边三角形的各角都相等,并且每一个角都等于60°
21、推论 2 有一个角等于60°的等腰三角形是等边三角形
22、关于坐标轴、原点的对称点:
23、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
24、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。
25、公式与性质:
26、要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。
27、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
28、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
29、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用*滑曲线连接各点)。
30、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。
31、完全*方公式
32、同底数幂的除法
33、分组分解法:
34、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
35、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
36、作为最后结果,如果是分式则应该是最简分式.
37、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
38、函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.
39、二者之间存在着从属关系。2、存在条件相同。3、0的算术*方根与*方根都是0
40、二元一次方程组
41、二元一次方程组的解
42、*均数
43、中位数与众数
44、从统计图分析数据的集中趋势
45、数据的离散程度
46、函数的三种表示法及其优缺点
47、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、
48、对角线互相*分的四边形是*行四边形;
49、对角线相等的*行四边形是矩形。
50、实数的绝对值:
——数学五年级知识点 40句菁华
1、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
3、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
4、分数的意义两种解释:①把单位“1”*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
5、除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;
6、多边形面积的计算。
7、205≈2.21 (保留两位小数)
8、先算乘除,再算加减
9、有括号的先算括号内
10、真分数和假分数、带分数
11、带分数:带分数由整数和真分数组成的分数。带分数>1.
12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
13、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。
14、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
15、含有未知数的算式叫做方程。( )
16、5x表示5个x相乘。( )
17、一个三角形,底a缩小5倍,*扩大5倍,面积就缩小10倍。( )
18、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,7天可以收割多少公顷?60.4公顷大豆需要多少天才能收完
19、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
20、乘法交换律:axb=bxa
21、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
22、【体积单位换算】
23、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。
24、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。
25、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
26、常用时间单位:时、分、秒。
27、计算小数乘法末尾对齐,按整数乘法法则进行计算。
28、把因数的位置交换相乘
29、用计算器来验算
30、长方形的周长=(长+宽)×2 C=(a+b)×2
31、长方形的面积=长×宽S=ab
32、圆的面积=圆周率×半径×半径
33、镜子内外的左右方向是相反的。
34、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。
35、运动场的跑道,通常1圈是400米,2圈半是1000米。
36、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
37、常用长度单位:米、分米、厘米、毫米、千米。
38、公式:
39、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
40、因数×因数=积积÷一个因数=另一个因数