1、一元二次方程3x2+5x-2=0的常数项是-2.
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3、反比例函数的图象在第一、三象限
4、经过圆心*分弦的直径垂直于弦。
5、直线与圆有唯一公共点时,叫做直线与圆相切。
6、三角形的外接圆的圆心叫做三角形的外心。
7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]
8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
9、指数
10、乘法公式:(正、逆用)
11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
12、样本容量:样本中个体的数目。
13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)
14、线段的中点及表示
15、角(*角、周角、直角、锐角、钝角)
16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
17、重要辅助线
18、作图:任意等分线段。
19、一元一次方程的解法:去分母→去括号→移项→合并同类项→
20、行程问题(匀速运动)
21、增长率问题:
22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
23、"等积"变"比例","比例"找"相似"。
24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
25、各象限内点的坐标的特点
26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
28、圆的定义(两种)
29、垂径定理及其推论
30、五种位置关系及判定与性质:(重点:相切)
31、两圆的公切线:⑴定义⑵性质
32、扇形面积公式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、y的变化值与对应的x的变化值成正比例,比值为k
35、当x=0时,b为函数在y轴上的截距。
36、k,b与函数图像所在象限:
37、当时间t一定,距离s是速度v的一次函数。s=vt。
38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
42、“三点定圆”定理
43、“等对等”定理及其推论
44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。
45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
48、解方程原理:天**衡。
49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
50、*行四边形面积公式推导:剪拼、*移
51、数不仅可以用来表示数量和顺序,还可以用来编码。
52、身份证码: 18 位
53、重心到顶点的距离与重心到对边中点的距离之比为2:1。
54、直角坐标系中,点A(3,0)在y轴上。
55、当x=-1时,函数y=的值为1.
56、函数y=-8x是一次函数。
57、函数y=4x+1是正比例函数。
58、反比例函数的图象在第一、三象限。
59、cos30= 。
60、勾股定理:两直角边*方和等于斜边*方
——数学知识点 100句菁华
1、公式。(每两个相邻的时间单位之间的进率是60)
2、①相同分母的分数相加、减:分母不变,只和分子相加、减。
3、利用等底等高的两个三角形面积相等。
4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6、有理数乘法法则:
7、乘方的定义:
8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
14、圆方程
15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
16、被除数÷除数=商
17、被除数=商×除数
18、从个位加起;
19、个位不够减从十位退1,在个位加10再减。
20、末位不管有几个0都不读。
21、角
22、(1)什么是互相垂直?什么是垂线?什么是垂足?
23、加法意义和运算定律
24、什么是被减数?什么是减数?什么叫差?
25、乘法
26、什么是单名数?
27、什么是有限小数?
28、什么是质数(或素数)?
29、什么是分解质因数?
30、怎么比较分数大小?
31、圆的周长总是直径的三倍多一些。
32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
33、求比一个数多(或少)几分之几的数是多少的解题方法
34、亿以内的数的认识:
35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
36、学生在动手操作中,可以画出并能计算出图形的周长。
37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、推论 三角形两边的差小于第三边
41、推论2 三角形的一个外角等于和它不相邻的两个内角的和
42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
44、直角三角形斜边上的中线等于斜边上的一半
45、矩形判定定理2 对角线相等的*行四边形是矩形
46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角
47、菱形判定定理2 对角线互相垂直的*行四边形是菱形
48、正方形性质定理1 正方形的四个角都是直角,四条边都相等
49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
50、等腰梯形的两条对角线相等
51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
52、不含任何元素的集合叫做空集,记为
53、一个加数=和+另一个加数
54、商中间或末尾有0的除法:
55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)
57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
59、比值通常用分数、小数和整数表示。
60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
63、当1和任何字母相乘时,“ 1” 省略不写.
64、检验,写答语
65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
68、知识点概述
69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
70、数学名词。一组具有某种共同性质的数学元素:有理数的~。
71、判断函数奇偶性忽略定义域致误
72、函数零点定理使用不当致误
73、忽视三视图中的实、虚线致误
74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a
76、2空间几何体的三视图和直观图
77、判断两*面*行的方法有三种:
78、3.1直线与*面垂直的判定
79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.
80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
81、被开方数一定是非负数.
82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
83、整式与分式
84、一元二次方程的二次函数的关系
85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
87、*行四边形判定定理4
88、矩形性质定理2
89、菱形判定定理1
90、正方形性质定理1
91、等腰梯形判定定理
92、性质定理1
93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
96、切线长定理
97、圆的外切四边形的两组对边的和相等
98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
99、扇形面积公式:S扇形=n兀R^2/360=LR/2
100、列方程解应用题的常用公式:
——中考数学知识点 50句菁华
1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
2、直角坐标系中,点A(3,0)在轴上。
3、直角坐标系中,点A(-2,3)在第四象限。
4、直角坐标系中,点A(-2,1)在第二象限。
5、数据1,2,3,4,5的中位数是3.
6、cs30°=。
7、sin260°+cs260°=1.
8、tan45°=1.
9、任意一个三角形一定有一个外接圆。
10、同圆或等圆的半径相等。
11、经过圆心*分弦的直径垂直于弦。
12、非负数:正实数与零的统称。(表为:x≥0)
13、相反数:①定义及表示法
14、奇数、偶数、质数、合数(正整数-自然数)
15、单项式与多项式
16、系数与指数
17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
19、科学记数法:(1≤a<10,n是整数=
20、个体:总体中每一个考察对象。
21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
24、一次函数
25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
27、圆的定义(两种)
28、正多边形及计算
29、圆柱、圆锥的侧面展开图及相关计算
30、作法与图形:通过如下3个步骤
31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。
32、抛物线是轴对称图形。对称轴为直线
33、一次项系数b和二次项系数a共同决定对称轴的位置。
34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。
35、用待定系数法求二次函数的解析式
36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
37、见直径往往作直径上的'圆周角
38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
40、(P11)小数四则运算顺序跟整数是一样的。
41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
43、方程的解是一个数;
44、长方形框架拉成*行四边形,周长不变,面积变小。
45、5 4 0 0 1
46、重心是三角形内到三边距离之积最大的点。
47、sin260+ cos260= 1.
48、tan45= 1.
49、cos60+ sin30= 1.
50、直角三角形两个锐角互余。
——数学知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、利用等底等高的两个三角形面积相等。
3、利用特殊规律
4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
5、大于0的数叫做正数。
6、在正数前面加上负号“-”的数叫做负数。
7、整数和分数统称为有理数。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、一个加数=和—另一个加数
10、被减数=减数+差
11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、进行检验,写出答案。
14、加法意义和运算定律
15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
17、求一个数的几分之几是多少?(用乘法)
18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
19、同角或等角的补角相等
20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半
21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
22、乘法分配律:a × b + a × c = a ×(b + c)
23、知道除法算式中各部分的名称:被除数、除数、商。
24、被除数末尾0前面能被除尽,0应写在4的下方。
25、除法的应用p44
26、单价、数量、总价p45、46
27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
31、比的后项不能为0。
32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
33、解比例式
34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)
35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
36、数的分类及概念数系表:
37、绝对值:①定义(两种):
38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
39、求函数的最值与值域的区别和联系
40、定义
41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。
42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
43、调查方式:
44、韦达定理
45、三角形内角和定理:
46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
48、相似三角形判定定理1
49、正n边形的每个内角都等于(n-2)×180°/n
50、弧长计算公式:L=n兀R/180——》L=nR
——中考物理重点知识点总结 60句菁华
1、热量只存在于热传递过程中,离开热传递说热量是没有意义的。热量对应的动词是:吸收或放出。
2、额定功率:用电器在额定电压下的功率。
3、倾听集中的过程,而不是抛弃。专注是对课堂学习的奉献,是对耳朵、对眼、对心、对嘴、对手的奉献。如果你能做到这“五到”,就会高度集中,课堂上学习到的所有重要内容都会在他脑海中留下深刻印象。在讲课的过程中,要确保你们能集中注意力,不偏离对方。我们必须注意课前休息10分钟,不要做太激烈的运动或激烈的辩论或阅读小说或家庭作业,以免课后喘息、幻想、无法*静,甚至大脑开始睡觉。因此,我们应该做好上课前的物质准备和心理准备。
4、我们要认真审视问题,了解实际情况和物理过程,注意分析问题的思维和解决问题的方法,坚持从对方身上吸取教训,提高知识转移和解决问题的能力。
5、在常温、常压下,一些物质的密度(单位:㎏/m)
6、物质是由大量分子组成的,分子间有空隙。分子处在永不停息的运动中。2、分子间不仅存在吸引力,而且还存在排斥力。固体和液体很难被压缩。
7、物体对物体的作用称为力。一个叫施力物体,一个叫受力物体。
8、由于地球的吸引而使物体受到的力叫做重力。物体所受重力的大小与它的质量成正比。物体所受的重力的方向是竖直向下的。
9、物体在几个力的作用下保持静止或做匀速直线运动,那么该物体处于*衡状态。当物体在两个力的作用下处于*衡状态时,就称为这两个力相互*衡,简称二力*衡。
10、物体所受的力不*衡时,其运动状态会发生改变。
11、质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
12、匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.
13、超声波特点:方向性好、穿透能力强、声能较集中。具体应用:声纳、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。
14、温度:指物体的冷热程度。测量的工具是温度计,温度计是根据液体的热胀冷缩的原理制成的。
15、温度计使用:1)使用前应观察它的量程和最小刻度值;2)使用时温度计玻璃泡要全部进入待测液体中,不要碰到容器底或容器壁;3)待温度计示数稳定后再读数;4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相*。
16、颜料三原色:红、黄、蓝。
17、不可见光包括红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热能就是以红外线传到地球上的);紫外线最显著的性质是使荧光物质发光,另外还可以灭菌。
18、凸透镜成像:1)物体在而被焦距以外(u>2f),成倒立缩小的实像(像距:f<v<2f=,如照相机。2=物体在焦距和二倍焦距之间(f<u<2f=成倒立放大的实像(像距v>2f)如幻灯机。3=物体在焦距之内(u<f=成正立放大的虚像。
19、参照物:在研究物体运动还是静止时被选作标准的物体(或者说是被假定不动的物体)叫参照物。
20、匀速直线运动:快慢不变、经过的路线是直线的运动。
21、天*的使用方法:1)把天*放在水*台上,把游码放在标尺左端的零刻度线处;2)调节*衡螺母,使指针指在分度盘的中线处,这时天**衡;3)把物体放在左盘里,用镊子向右盘加减法吗并调解游码在标尺上的位置,知道横梁恢复*衡;4)这时物体的质量等于右盘中砝码总质量加上游码所对的刻度值。
22、重力计算公式:G=mg【g为重力与质量的比值:g=9.8N/kg,粗略计算时可取g=10N/kg】;重力跟质量成正比。
23、流体压强大小与速度关系:在流体中流速越大的地方,压强越小;流速越小的地方,压强越大。
24、动力臂:从支点到动力的作用线的距离【L】
25、阻力臂:从支点到阻力的作用线的距离【L】
26、杠杆种类:
27、定滑轮特点:不省力,但能改变力的方向。
28、功的计算:功【W】=力【F】×距离【S】
29、【W】公式:W=Fs
30、机械效率:有用功跟总功的比值。
31、一个物体能够做功,这个物体就具有能量。
32、内能:物体内部所有分子做无规则运动的动能和分子势能的总合。
33、热量计算:
34、热机的效率:用来做有用的那部分能量和燃料完全燃烧放出的能量之比。
35、电路图:用符号表示电路连接的图。
36、串联:把电路元件逐个顺次连接起来的电路。
37、电流【I】:单位:安培【A】;常用单位:毫安、微安。
38、公式:I=U/R
39、电阻串联特点:
40、进户线分火线和零线;可用电笔测量,若电笔氖管发光则为火线。
41、所有家用电器和插座都是并联的,开关则要与它所控制的用电器并联。
42、磁化:使原来没有磁性的物体带上磁性的过程。
43、发电机的原理是根据电磁感应现象制成的。交流发电机主要由定子和转子组成。
44、电视广播、移动通信是利用微波传递信号的。
45、燃料的燃烧是一种化学变化,在燃烧过程中,燃料的化学能转化为内能,相同质量的不同燃料在燃烧时放出的热量一般是不同的、三千克的某种燃料完全燃烧放出的热量叫做这种燃料的燃烧值、燃烧值的单位是焦/千克(即J/kg)、燃料的燃烧值是燃料本身的一种特性。
46、可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。
47、电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反),规定正电荷的定向移动方向为电流方向。
48、在一定条件下导体和绝缘体是可以相互转化的。
49、开关应连接在用电器和火线之间。两孔插座(左零右火),三孔插座(左零右火上地)。
50、家庭电路中,电流过大,保险丝熔断,产生的原因有两个:①短路②总功率过大。
51、奥斯特试验证明通电导体周围存在磁场(电生磁、电流的磁效应),法拉第发现了电磁感应现象(磁生电、发电机)。
52、重力是由于地球的吸引而产生的,方向总是竖直向下的,浮力的方向总是竖直向上的。
53、相互作用力是A给B的力、B给A的力。
54、惯性现象:(车突然启动人向后仰、跳远时助跑、拍打衣服上的灰、足球离开脚后向前运动、运动员冲过终点不能立刻停下来,甩掉手上的水)。
55、曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如*抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。
56、物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:
57、电阻
58、分子*均动能
59、声音的产生:声音是由物体振动产生的。
60、人感知声音的两种方式:耳听、骨传导
——二年级上册数学知识点 50句菁华
1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。
2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。
3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。
5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
7、万以内数的读法和写法与1000以内的数读法和写法相同。
8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。
9、“有余数除法”的复习。
10、“方向和路线”的复习。
11、“万以内的加、减法”的复习。
12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
13、实数
14、轴对称与坐标变化
15、一次函数与正比例函数
16、用二元一次方程组确定一次函数表达式
17、从统计图分析数据的集中趋势
18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。
19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
22、差=被减数—减数
23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
24、56页例5
25、探索并掌握两位数减两位数不退位)的计算方法。
26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。
28、渗透统计的思想和方法。
29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
31、厘米和米
32、笔算减法
33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。
34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;
35、观察物体时,要抓住物体的特征来判断。
36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;
37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
40、同分母分数的加减法。(分母不变,分子相加或相减。)
41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点
42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。
43、三角形的面积=底×高÷2:S=ah÷2。
44、长方体的体积=长×宽×高:V=abh。
45、圆柱的侧面积=底面圆的周长×高:S=ch。
46、常用的长度单位:米、厘米。
47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
48、差=被减数-减数
49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
50、乘法算式的写法和读法
——数学必修一知识点 50句菁华
1、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
2、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
3、集合的表示:{ … } 如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
4、不含任何元素的集合叫做空集,记为Φ
5、定义域:能使函数式有意义的实数x的集合称为函数的定义域。
6、函数图象知识归纳
7、函数最大(小)值(定义见课本p36页)
8、集合的表示方法:常用的有列举法、描述法和图文法
9、交集:A∩B={x|x∈A且x∈B}
10、有关子集的几个等价关系
11、集合,,,且,则有
12、集合,,____________.
13、已知集合A={x|},若A∩R=,则实数m的取值范围是
14、已知集合,B=,若,且求实数a,b的值。
15、设,集合,,且A=B,求实数x,y的值。
16、集合的表示
17、集合的三个特性
18、函数的奇偶性
19、判断对应是否为映射时,抓住两点:
20、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
21、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
22、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
23、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
24、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。
25、直线与*面*行(核心)
26、常利用三角形中位线、*行四边形对边、已知直线作一*面找其交线
27、直线与*面垂直
28、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
29、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
30、向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查*面向量的基本概念和运算律;考查*面向量的坐标运算;考查*面向量与几何、三角、代数等学科的综合性问题。
31、开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。
32、求函数的定义域有哪些常见类型?
33、如何用定义证明函数的单调性?
34、如何利用导数判断函数的单调性?
35、你熟悉周期函数的定义吗?
36、抛物线有一个顶点P,坐标为
37、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈,当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数、此时,的次方根用符号表示、式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand),当是偶数时,正数的次方根有两个,这两个数互为相反数、此时,正数的正的次方根用符号表示,负的次方根用符号—表示、正的次方根与负的次方根可以合并成±(>0)、由此可得:负数没有偶次方根。
38、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。
39、代数法)求方程的实数根;
40、几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
41、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
42、二次函数根的问题——一题多解
43、函数y=a^x与y=-a^-x关于坐标原点对称
44、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
45、善于用“1“巧解题
46、三角问题的非三角化解题策略
47、三角函数中的数学思想方法
48、对数函数的性质:
49、幂函数性质归纳.
50、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单独的一个数字是单项式,它的系数是它本身。
4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
5、单项式的系数包括它前面的符号。
6、单项式的系数是带分数时,应化成假分数。
7、单项式的系数是1或―1时,通常省略数字“1”。
8、几个单项式的和叫做多项式。
9、一个多项式有几项,就叫做几项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
15、此法则也可以逆用,即:amn =(am)n=(an)m。
16、此法则也可以逆用,即:anbn=(ab)n。
17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
19、相同字母的幂相乘时,底数不变,指数相加。
20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
22、单项式与单项式、多项式相乘的.法则。
23、三角形
24、常见的轴对称图形有:
25、(1)等腰三角形:对称轴,性质
26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。
30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
31、垂直三要素:垂直关系,垂直记号,垂足
32、垂直公理:过一点有且只有一条直线与已知直线垂直。
33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
35、命题:判断一件事情的语句叫命题。
36、无理数
37、相反数
38、实数与数轴上点的关系:
39、算术*方根
40、注重预习培养自学能力
——三年级上册数学知识点总结 40句菁华
1、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
2、公式。(每两个相邻的时间单位之间的进率是60)
3、在计算长度时,只有相同的长度单位才能相加减。
4、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
5、读数和写数(读数时写汉字写数时写*数字)
6、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
7、有4条直的边和4个角封闭图形我们叫它四边形。
8、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
9、四边形的特点:有四条直的边,有四个角。
10、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
11、正方形的特点:有4个直角,4条边相等。
12、公式:
13、连乘的简便计算:
14、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
15、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
16、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
17、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
18、把分数化成小数的方法:用分数的分子除以分母。
19、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
20、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
21、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
22、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
23、*行四边形的特点:对边*行且相等、对角相等。
24、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。
25、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
26、关于0的一些规定:
27、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
28、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
29、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
30、认识整千数(记忆:10个一千是一万)
31、读数和写数(读数时写汉字写数时写*数字)
32、要认真审题,弄清题目要求后再做。
33、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
34、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
35、用乘法口诀求商时,想除数和几相乘等于被除数。
36、用乘法和除法两步计算解决实际问题的方法:
37、正确理解并熟记相邻的面积单位之间的进率。
38、低级单位——高级单位:数量÷它们间的进率
39、速度和=相遇路程÷相遇时间
40、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
——数学圆知识点总结 40句菁华
1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
2、定理:一条弧所对的圆周角等于它所对的圆心角的一半
3、①直线L和⊙O相交d﹤r
4、推论:经过切点且垂直于切线的直线必经过圆心
5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
6、圆的外切四边形的两组对边的和相等
7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
8、①两圆外离d﹥R+r
9、正三角形面积√3a2/4a表示边长
10、弧长计算公式:L=n兀R/180
11、圆心决定圆的位置,半径决定圆的大小。
12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
14、两个数相除,又叫做这两个数的比。比的后项不能为0.
15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、定理相交两圆的连心线垂直*分两圆的公共弦
20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
22、内公切线长= d-R-r外公切线长= d-R+r
23、定理一条弧所对的圆周角等于它所对的圆心角的一半
24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
26、一条弧所对的圆周角等于它所对的圆心角的一半。
27、圆的面积S=πr
28、圆锥侧面积S=rl
29、圆的标准方程
30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
33、圆的周长C=2πr=πd
34、圆锥侧面积S=πrl
35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧
36、①直线L和⊙O相交 d
37、切线的性质定理 圆的切线垂直于经过切点的半径
38、正n边形的每个内角都等于(n-2)×180°/n
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径