1、一元二次方程3x2+5x-2=0的常数项是-2.
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3、反比例函数的图象在第一、三象限
4、经过圆心*分弦的直径垂直于弦。
5、直线与圆有唯一公共点时,叫做直线与圆相切。
6、三角形的外接圆的圆心叫做三角形的外心。
7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]
8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
9、指数
10、乘法公式:(正、逆用)
11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
12、样本容量:样本中个体的数目。
13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)
14、线段的中点及表示
15、角(*角、周角、直角、锐角、钝角)
16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
17、重要辅助线
18、作图:任意等分线段。
19、一元一次方程的解法:去分母→去括号→移项→合并同类项→
20、行程问题(匀速运动)
21、增长率问题:
22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
23、"等积"变"比例","比例"找"相似"。
24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
25、各象限内点的坐标的特点
26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
28、圆的定义(两种)
29、垂径定理及其推论
30、五种位置关系及判定与性质:(重点:相切)
31、两圆的公切线:⑴定义⑵性质
32、扇形面积公式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、y的变化值与对应的x的变化值成正比例,比值为k
35、当x=0时,b为函数在y轴上的截距。
36、k,b与函数图像所在象限:
37、当时间t一定,距离s是速度v的一次函数。s=vt。
38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
42、“三点定圆”定理
43、“等对等”定理及其推论
44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。
45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
48、解方程原理:天**衡。
49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
50、*行四边形面积公式推导:剪拼、*移
51、数不仅可以用来表示数量和顺序,还可以用来编码。
52、身份证码: 18 位
53、重心到顶点的距离与重心到对边中点的距离之比为2:1。
54、直角坐标系中,点A(3,0)在y轴上。
55、当x=-1时,函数y=的值为1.
56、函数y=-8x是一次函数。
57、函数y=4x+1是正比例函数。
58、反比例函数的图象在第一、三象限。
59、cos30= 。
60、勾股定理:两直角边*方和等于斜边*方
——数学知识点 100句菁华
1、公式。(每两个相邻的时间单位之间的进率是60)
2、①相同分母的分数相加、减:分母不变,只和分子相加、减。
3、利用等底等高的两个三角形面积相等。
4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6、有理数乘法法则:
7、乘方的定义:
8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
14、圆方程
15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
16、被除数÷除数=商
17、被除数=商×除数
18、从个位加起;
19、个位不够减从十位退1,在个位加10再减。
20、末位不管有几个0都不读。
21、角
22、(1)什么是互相垂直?什么是垂线?什么是垂足?
23、加法意义和运算定律
24、什么是被减数?什么是减数?什么叫差?
25、乘法
26、什么是单名数?
27、什么是有限小数?
28、什么是质数(或素数)?
29、什么是分解质因数?
30、怎么比较分数大小?
31、圆的周长总是直径的三倍多一些。
32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
33、求比一个数多(或少)几分之几的数是多少的解题方法
34、亿以内的数的认识:
35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
36、学生在动手操作中,可以画出并能计算出图形的周长。
37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、推论 三角形两边的差小于第三边
41、推论2 三角形的一个外角等于和它不相邻的两个内角的和
42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
44、直角三角形斜边上的中线等于斜边上的一半
45、矩形判定定理2 对角线相等的*行四边形是矩形
46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角
47、菱形判定定理2 对角线互相垂直的*行四边形是菱形
48、正方形性质定理1 正方形的四个角都是直角,四条边都相等
49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
50、等腰梯形的两条对角线相等
51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
52、不含任何元素的集合叫做空集,记为
53、一个加数=和+另一个加数
54、商中间或末尾有0的除法:
55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)
57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
59、比值通常用分数、小数和整数表示。
60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
63、当1和任何字母相乘时,“ 1” 省略不写.
64、检验,写答语
65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
68、知识点概述
69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
70、数学名词。一组具有某种共同性质的数学元素:有理数的~。
71、判断函数奇偶性忽略定义域致误
72、函数零点定理使用不当致误
73、忽视三视图中的实、虚线致误
74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a
76、2空间几何体的三视图和直观图
77、判断两*面*行的方法有三种:
78、3.1直线与*面垂直的判定
79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.
80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
81、被开方数一定是非负数.
82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
83、整式与分式
84、一元二次方程的二次函数的关系
85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
87、*行四边形判定定理4
88、矩形性质定理2
89、菱形判定定理1
90、正方形性质定理1
91、等腰梯形判定定理
92、性质定理1
93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
96、切线长定理
97、圆的外切四边形的两组对边的和相等
98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
99、扇形面积公式:S扇形=n兀R^2/360=LR/2
100、列方程解应用题的常用公式:
——中考数学知识点 50句菁华
1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
2、直角坐标系中,点A(3,0)在轴上。
3、直角坐标系中,点A(-2,3)在第四象限。
4、直角坐标系中,点A(-2,1)在第二象限。
5、数据1,2,3,4,5的中位数是3.
6、cs30°=。
7、sin260°+cs260°=1.
8、tan45°=1.
9、任意一个三角形一定有一个外接圆。
10、同圆或等圆的半径相等。
11、经过圆心*分弦的直径垂直于弦。
12、非负数:正实数与零的统称。(表为:x≥0)
13、相反数:①定义及表示法
14、奇数、偶数、质数、合数(正整数-自然数)
15、单项式与多项式
16、系数与指数
17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
19、科学记数法:(1≤a<10,n是整数=
20、个体:总体中每一个考察对象。
21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
24、一次函数
25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
27、圆的定义(两种)
28、正多边形及计算
29、圆柱、圆锥的侧面展开图及相关计算
30、作法与图形:通过如下3个步骤
31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。
32、抛物线是轴对称图形。对称轴为直线
33、一次项系数b和二次项系数a共同决定对称轴的位置。
34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。
35、用待定系数法求二次函数的解析式
36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
37、见直径往往作直径上的'圆周角
38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
40、(P11)小数四则运算顺序跟整数是一样的。
41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
43、方程的解是一个数;
44、长方形框架拉成*行四边形,周长不变,面积变小。
45、5 4 0 0 1
46、重心是三角形内到三边距离之积最大的点。
47、sin260+ cos260= 1.
48、tan45= 1.
49、cos60+ sin30= 1.
50、直角三角形两个锐角互余。
——数学知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、利用等底等高的两个三角形面积相等。
3、利用特殊规律
4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
5、大于0的数叫做正数。
6、在正数前面加上负号“-”的数叫做负数。
7、整数和分数统称为有理数。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、一个加数=和—另一个加数
10、被减数=减数+差
11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、进行检验,写出答案。
14、加法意义和运算定律
15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
17、求一个数的几分之几是多少?(用乘法)
18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
19、同角或等角的补角相等
20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半
21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
22、乘法分配律:a × b + a × c = a ×(b + c)
23、知道除法算式中各部分的名称:被除数、除数、商。
24、被除数末尾0前面能被除尽,0应写在4的下方。
25、除法的应用p44
26、单价、数量、总价p45、46
27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
31、比的后项不能为0。
32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
33、解比例式
34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)
35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
36、数的分类及概念数系表:
37、绝对值:①定义(两种):
38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
39、求函数的最值与值域的区别和联系
40、定义
41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。
42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
43、调查方式:
44、韦达定理
45、三角形内角和定理:
46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
48、相似三角形判定定理1
49、正n边形的每个内角都等于(n-2)×180°/n
50、弧长计算公式:L=n兀R/180——》L=nR
——中考知识点总结 100句菁华
1、乐音的三个特征:音调、响度、音色。1)音调:是指声音的高低,它与发声体的频率有关。2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关。
2、常见的温度计:1)实验室用温度计;2)体温计;3)寒暑表
3、固体、液体、气体是物质存在的三种状态。
4、熔点或凝固点:晶体熔化时保持不变的温度叫熔点;晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固体相同。
5、汽化:物质从液态变成气态的过程叫汽化,汽化的方式有蒸发和沸腾,都要吸热。
6、升华和凝华:物质从固态直接变成气态叫升华【升华吸热】;物质从气态直接变成固态叫凝华【凝华放热】。
7、光源:自身能够发光的物体叫光源。
8、光的三原色:红、绿、蓝。
9、*面镜成像特点:1)*面镜成的是虚像;2)像与物大小相等;3)像与物体到镜面的距离相等;4)相与物的连线与镜面垂直,另*面镜里成的像与物体左右倒置。
10、误差:测量值与真实值之间的差异,叫误差。
11、匀速直线运动:快慢不变、经过的路线是直线的运动。
12、速度在单位时间内通过的路程。S=vt 单位:m/s或km/h
13、*均速度:在变速运动中,用总路程除以所用的时间可得物体在这段路程中的快慢程度,这就是*均速度。
14、光年:指光在真空中行进一年所经过的距离。
15、密度是物质的一种特性,不同种类的物质密度一般不同。
16、分子是原子组成的,原子由原子核和核外电子组成,原子核是由质子和中子组成。
17、弹簧测力计原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。
18、减小有害摩擦的方法:1)使接触面光滑、减小压力;2)用滚动代替滑动;3)滴加润滑油;4)让物体直接脱离接触。
19、大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。
20、*衡法:F=G
21、功的计算:功【W】=力【F】×距离【S】
22、机械效率:有用功跟总功的比值。
23、弹性势能:物体由于发生弹性而形变具有的能。物体的弹性变大,弹性势能也变大。
24、机械能:动能和势能的统称。【机械能=动能+势能】【单位:焦耳】
25、物体吸收热量,温度升高时,内能增大;物体放热,温度降低时,内能减小。
26、热机的效率:用来做有用的那部分能量和燃料完全燃烧放出的能量之比。
27、电源:能提供持续电流或电压的装置。
28、电路图:用符号表示电路连接的图。
29、滑动变阻器:
30、公式:I=U/R
31、额定功率【P】:用电器在额定电压下的功率。
32、进户线分火线和零线;可用电笔测量,若电笔氖管发光则为火线。
33、电路中电流过大原因:1)电路发生短路;2)电器总功率过大。
34、任何磁体都有2个极:一个是N另一个是S极。
35、电磁继电器:实质上是一个利用电磁铁来控制的开关。它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、高电流。还可实现自动控制。
36、电磁感应现象中是接卸能转化为电能。
37、磁场对电流的作用:通电导线在磁场中腰受到磁力的作用。是由电能转化为机械能。应用是制成电动机。
38、通电导体在磁场中手力方向:跟电流方向和磁感线方向有关。
39、直流电:电流方向不变的电流。
40、现代“信息高速公路”两大支柱:卫星通讯、管线通信。
41、*是利用轻核的聚变释放能量。
42、通常情况下,声音在固体中传播最快,其次是液体,气体
43、*面镜成像实验玻璃板应与水*桌面垂直放置
44、凸透镜成实像时,物如果换到像的位置,像也换到物的位置
45、重力是由于地球对物体的吸引而产生的
46、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力
47、影响滑动摩擦力大小的两个因素:
48、物体不受力或受*衡力作用时可能静止也可能保持匀速直线运动
49、1m3水的质量是1t,1cm3水的质量是1g
50、增大压强的方法:
51、物体在漂浮和悬浮状态下:浮力=重力
52、电路的组成:电源、开关、用电器、导线
53、电路的三种状态:通路、断路、短路
54、电压是形成电流的原因
55、磁场中某点磁场的方向:
56、电流越大,线圈匝数越多电磁铁的磁性越强
57、磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。
58、电磁继电器:实质上是一个利用电磁铁来控制的开关。它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、强电流。还可实现自动控制。
59、产生感生电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动。
60、发电机的原理是根据电磁感应现象制成的。交流发电机主要由定子和转子。
61、交流电:周期性改变电流方向的电流。
62、锅铲、手勺、漏勺铝锅等炊具的炳都用木头或塑料,木头、塑料是热的不良导体,以便在烹饪过程中不烫手。
63、往保温瓶灌开水时,不灌满,能更好地保温。-------因为未满时,瓶口处有层气体,它是热的不良导体,能更好地防止热量的散失。
64、当打开啤酒盖时,总会冒出一些雾气,这是为什么?——啤酒中溶有大量的二氧化碳,且内部压强大于外界的大气压强,当开启瓶盖时,二氧化碳逸出,体积变大,膨胀对外做功,本身的内能减小,温度降低,周围的水蒸汽遇冷液化形成“雾”。
65、高压锅的原理——利用了沸点跟气压的关系。
66、过年吃饺子是*的习俗,煮饺子时,从水开饺子下锅到煮熟后捞出的过程,有很多物理现象,请你说出你所知道的,并用物理知识解释。
67、简单机械的应用:
68、汽车爬坡时要调为低速:由P=FV,功率一定时,降低速度,可增大牵引力。
69、冬天,为防冻坏水箱,入夜时要排尽水箱中的水——防止热胀冷缩的危害
70、汽车旁的观后镜,交叉路口的观察镜用的都是凸面镜,可以开阔视野。
71、钳柄套上塑料套是方便电工使用时能够绝缘,防止漏电。
72、队员的质量大容易取胜———质量大惯性大改变运动状态难度大容易取胜。
73、在初中阶段,所有的酸和碱之间都可以发生反应生成盐和水
74、碱和非金属氧化物的反应不是复分解反应,金属氧化物和酸的反应是复分解反应
75、在初中阶段,大部分碱是不可溶的,只有氢氧化钠、钾、钡、钙(微溶)和氨水可以在溶液中存在,相反,大部分酸是可溶的
76、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
77、多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
78、为什么要牢牢把握先进文化的前进方向?如何把握这一方向?
79、显微镜的应用
80、细胞分化形成了各种不同的组织。组织是指由形态相似,结构、功能相同的细胞联合在一起形成的。(P62)。
81、区分常见的裸子植物和被子植物裸子植物:种子是裸露的,外面没有果皮包被。
82、因习惯而错读
83、准确理解文章的基本内容
84、唐代工艺品中成就最为卓著的首推唐三彩,殉葬的俑和驼、马动物是其中的精品。
85、元代永乐宫三清殿壁画的作者是民间画工马君祥等,而纯阳殿的壁画构图则是采用了连环画的表现形式。
86、明末画家陈洪绶9岁时创作的九歌图,其中以屈子行吟图为最佳。
87、被称为我国古代园林景观雕塑第一座丰碑的是汉代昆明池石刻牵牛像和织女。
88、传为东晋画家顾恺之的绘画作品有三件,即《女史箴图》、《洛神赋图》、《洛神赋图》。
89、吴昌硕的艺术道路与众不同,他从制印开始,又学习书法辞章,最后取得绘画成就。
90、《霍去病墓前石刻》被称为“*石刻,气魄深沉雄大”的杰出代表,其主体雕刻是《马踏匈奴》。
91、元代肖像画家王绎,驰名江浙一带,著《写像秘诀》一书。
92、人类最早的造型艺术产生于旧石器时代晚期,即距今三万到一万多年之间。
93、创造人体比例为1:7的希腊雕刻家是爱奥尼亚,其理论具体体现在他的雕刻《荷矛者》中。
94、罗马式教堂是以巴西里卡式演变过来的,在封建割据的情况下,它也有封建城堡的特点。
95、法国写实主义绘画的旗手是库尔贝,其代表作品有《画室》、《奥尔南的葬礼》等。
96、十九世纪英国的两位杰出的风景画家是透纳和康斯太勃尔。
97、被称之为“原始的维纳斯”的著名代表作,是在维也纳附近的温林多夫出土的女性雕像。
98、欧洲“巴洛克”艺术在雕刻方面的代表是意大利的贝尼尼,在绘画方面的代表是佛兰德斯的鲁本斯。
99、在法国印象派中,以画人物著称的画家有马奈、德加和雷诺阿;以画风景著称的画家又莫奈、西斯莱 和毕沙罗。
100、(类似色)也叫邻近色,指(色相)比较接近的各种颜色。如紫红、红、橘红等。
——数学必修一知识点 50句菁华
1、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
2、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
3、集合的表示:{ … } 如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
4、不含任何元素的集合叫做空集,记为Φ
5、定义域:能使函数式有意义的实数x的集合称为函数的定义域。
6、函数图象知识归纳
7、函数最大(小)值(定义见课本p36页)
8、集合的表示方法:常用的有列举法、描述法和图文法
9、交集:A∩B={x|x∈A且x∈B}
10、有关子集的几个等价关系
11、集合,,,且,则有
12、集合,,____________.
13、已知集合A={x|},若A∩R=,则实数m的取值范围是
14、已知集合,B=,若,且求实数a,b的值。
15、设,集合,,且A=B,求实数x,y的值。
16、集合的表示
17、集合的三个特性
18、函数的奇偶性
19、判断对应是否为映射时,抓住两点:
20、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
21、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
22、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
23、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
24、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。
25、直线与*面*行(核心)
26、常利用三角形中位线、*行四边形对边、已知直线作一*面找其交线
27、直线与*面垂直
28、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
29、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
30、向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查*面向量的基本概念和运算律;考查*面向量的坐标运算;考查*面向量与几何、三角、代数等学科的综合性问题。
31、开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。
32、求函数的定义域有哪些常见类型?
33、如何用定义证明函数的单调性?
34、如何利用导数判断函数的单调性?
35、你熟悉周期函数的定义吗?
36、抛物线有一个顶点P,坐标为
37、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈,当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数、此时,的次方根用符号表示、式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand),当是偶数时,正数的次方根有两个,这两个数互为相反数、此时,正数的正的次方根用符号表示,负的次方根用符号—表示、正的次方根与负的次方根可以合并成±(>0)、由此可得:负数没有偶次方根。
38、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。
39、代数法)求方程的实数根;
40、几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
41、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
42、二次函数根的问题——一题多解
43、函数y=a^x与y=-a^-x关于坐标原点对称
44、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
45、善于用“1“巧解题
46、三角问题的非三角化解题策略
47、三角函数中的数学思想方法
48、对数函数的性质:
49、幂函数性质归纳.
50、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
——高等数学知识点总结 50句菁华
1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
3、掌握不定积分的换元积分法。
4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。
6、会解欧拉方程。
7、能力层面
8、做题之后加强反思。
9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
10、列方程解应用题的常用公式:
11、有理数:①整数→正整数,0,负整数;
12、方程与方程组
13、角
14、同角或等角的补角相等
15、同角或等角的余角相等——余角=90-角度。
16、直线外一点与直线上各点连接的所有线段中,垂线段最短
17、同旁内角互补,两直线*行
18、两直线*行,内错角相等
19、定理
20、三角形内角和定理:
21、推论3
22、全等三角形的对应边、对应角相等
23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
24、*行四边形性质定理1
25、矩形判定定理2
26、菱形性质定理1
27、菱形面积=对角线乘积的一半,即S=(a×b)÷2
28、菱形判定定理2
29、正方形性质定理1
30、等腰梯形判定定理
31、*行线分线段成比例定理
32、相似三角形判定定理1
33、判定定理2
34、性质定理1
35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
36、切线的判定定理
37、圆的外切四边形的两组对边的和相等
38、如果两个圆相切,那么切点一定在连心线上
39、正n边形的每个内角都等于(n-2)×180°/n
40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
41、弧长计算公式:L=n兀R/180——》L=nR
42、绝对值:
43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
44、混合运算法则:先乘方,后乘除,最后加减。
45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单独的一个数字是单项式,它的系数是它本身。
4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
5、单项式的系数包括它前面的符号。
6、单项式的系数是带分数时,应化成假分数。
7、单项式的系数是1或―1时,通常省略数字“1”。
8、几个单项式的和叫做多项式。
9、一个多项式有几项,就叫做几项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
15、此法则也可以逆用,即:amn =(am)n=(an)m。
16、此法则也可以逆用,即:anbn=(ab)n。
17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
19、相同字母的幂相乘时,底数不变,指数相加。
20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
22、单项式与单项式、多项式相乘的.法则。
23、三角形
24、常见的轴对称图形有:
25、(1)等腰三角形:对称轴,性质
26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。
30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
31、垂直三要素:垂直关系,垂直记号,垂足
32、垂直公理:过一点有且只有一条直线与已知直线垂直。
33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
35、命题:判断一件事情的语句叫命题。
36、无理数
37、相反数
38、实数与数轴上点的关系:
39、算术*方根
40、注重预习培养自学能力
——中考物理必考知识点 40句菁华
1、一切发声的物体都在振动,声音的传播需要介质
2、通常情况下,声音在固体中传播最快,其次是液体,气体
3、超声波的速度比电磁波的速度慢得多(声速和光速)
4、光是电磁波,电磁波能在真空中传播
5、反射定律描述中要先说反射再说入射(*面镜成像也说"像与物┅"的顺序)
6、在光的反射现象和折射现象中光路都是可逆的
7、参照物的选取是任意的,被研究的物体不能选作参照物
8、力的三要素:力的大小、方向、作用点
9、惯性现象:(车突然启动人向后仰、跳远时助跑、运动员冲过终点不能立刻停下来)
10、机械能等于动能和势能的总和
11、物体温度升高内能一定增加(对)
12、物体内能增加温度一定升高(错,冰变为水)
13、热机的做功冲程是把内能转化为机械能
14、水的密度:ρ水=1.0×103kg/m3=1 g/ cm3
15、同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同)
16、液体的密度越大,深度越深液体内部压强越大
17、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值
18、物体在悬浮和沉底状态下:V排 = V物
19、磁场的基本性质是它对放入其中的磁体有力的作用
20、开水不响,响水不开水沸腾之前,由于对流,水内气泡一边上升,一边上下振动,大部分气泡在水内压力下破裂,其破裂声和振动声又与容器产生共鸣,所以声音很大。水沸腾后,上下等温,气泡体积增大,在浮力作用下一直升到水面才破裂开来,因而响声比较小。
21、隔墙有耳固体可以传声。
22、一滴水可见太阳,一件事可见精神一滴水相当于一个凸透镜,根据凸透镜成像的规律,透过一滴水可以有太阳的像,小中见大。
23、水缸出汗,不用挑担水缸中的水由于蒸发,水面以下部分温度比空气温度低,空气中的水蒸气遇到温度较低的外表面就产生了液化现象,水珠附在水缸外面。晴天时由于空气中水蒸气含量少,虽然也会在水缸外表面液化,但微量的液化很快又蒸发了,不能形成水珠。而如果空气潮湿,水蒸发就很慢,水缸外表面的液化大于汽化,就有水珠出现了.空气中水蒸气含量大,降雨的可能性大,当然不需要挑水浇地了。
24、金不怕火来炼,真理不怕争辩从金的`熔点来看,虽不是最高的,但也有1068℃,而一般火焰的温度为800℃左右,由于火焰的温度小于金的熔点,所以金不能熔化。
25、瑞雪兆丰年下到地上的雪有许多松散的空隙,里面充满着不流动的空气,是热的不良导体,当它覆盖在农作物上时,可以很好的防止热传导和空气对流,因此能起到保温作用。
26、泥鳅黄鳝交朋友——滑头对滑头泥鳅黄鳝的表面都光滑且润滑,摩擦力小。
27、一个巴掌拍不响力是物体对物体的作用,一只巴掌要么拍另一只巴掌,要么拍在其它物体上才能产生力的作用,才能拍响。
28、记住两个原理:
29、杠杆*衡条件:F1 L1=F2 L2
30、理想斜面:F/G=h/L
31、理想滑轮:F=G/n
32、功:W=FS=Gh (把物体举高)
33、滑轮组效率:
34、放热:Q放=Cm(t0-t)=CmΔt
35、热*衡方程:Q放=Q吸
36、欧姆定律:I=U/R
37、焦耳定律:
38、声速:V=340m/s (15℃)
39、电压:①一节干电池电压:1.5V;②一节蓄电池电压:2V;③对人体安全电压:不高于36V;④家庭电路电压:220V(家庭电路为交流电,频率为50Hz,周期为0.02s,即1s内50个周期,电流方向改变100次);动力电路的电压:380V ;⑤手机电池电压:3.6V。
40、中学生的质量约:50Kg;一只鸡的质量约:1.5Kg.
——六年级上册数学知识点总结 40句菁华
1、圆的定义:圆是由曲线围成的一种*面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
7、圆周率实验:
8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
10、取近似数的方法:
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
13、比例的基本性质是在比例里两内项积等于两外项积。
14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
18、分子分母是互质数的分数叫做最简分数。
19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
21、整数除法计算法则:
22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
26、小数的倒数:
27、各类地形中,什么地形面积?什么最小?
28、这个月哪项出最多?支出了多少元?
29、小数点位置的移动引起小数大小的变化
30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
31、减法的性质:
32、整数乘法计算法则:
33、小数乘法法则:
34、同分母分数加减法计算方法:
35、异分母分数加减法计算方法:
36、小数除法的意义
37、、长方形
38、、长方体
39、三角形
40、圆形
——数学初中全部重要知识点总结 40句菁华
1、方程与方程组
2、点,线,面
3、角
4、同角或等角的补角相等
5、同角或等角的余角相等——余角=90-角度。
6、如果两条直线都和第三条直线*行,这两条直线也互相*行
7、同位角相等,两直线*行
8、内错角相等,两直线*行
9、三角形内角和定理:
10、角边角公理(
11、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
12、等腰三角形的性质定理
13、多边形内角和定理
14、*行四边形性质定理2
15、*行四边形性质定理3
16、*行四边形判定定理4
17、菱形判定定理1
18、等腰梯形性质定理
19、*行线分线段成比例定理
20、相似三角形判定定理1
21、判定定理2
22、性质定理1
23、性质定理3
24、圆的外部可以看作是圆心的距离大于半径的点的集合
25、切线的判定定理
26、切线的性质定理
27、正n边形的每个内角都等于(n-2)×180°/n
28、扇形面积公式:S扇形=n兀R^2/360=LR/2
29、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
30、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
31、列方程解应用题的常用公式:
32、反证法
33、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
34、中被开方数的取值范围:被开方数a≥0
35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
36、相反数:
37、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
38、有理数加法法则:
39、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
40、有理数乘法的运算律: