高二数学知识点归纳 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、有穷数列与无穷数列:

2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

3、等比数列中,若m+n=p+q,则

4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。

6、向量的数量积:

7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

8、不等式证明的依据

9、不等式的证明方法

10、交集;

11、逻辑连结词;

12、反函数;

13、对数的运算性质;

14、等比数列及其通顶公式;

15、同角三角函数的基本关系式;

16、已知三角函数值求角;

17、斜三角形解法举例。

18、*面向量的坐标表示;

19、不等式的证明;

20、不等式的解法;

21、直线的倾斜角和斜率;

22、直线方程的点斜式和两点式;

23、直线方程:

24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

25、位置关系的证明(主要方法):注意立体几何证明的书写

26、常见函数的导数公式:①;②;③;

27、导数的应用:

28、四种命题:

29、逻辑联结词:

30、面积、体积最(大)问题

31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

34、三角形三角关系:A+B+C=180°;C=180°-(A+B);

35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

39、,,成等差数列

40、一元二次不等式解法:


高二数学知识点归纳 40句菁华扩展阅读


高二数学知识点归纳 40句菁华(扩展1)

——数学知识点 100句菁华

1、公式。(每两个相邻的时间单位之间的进率是60)

2、①相同分母的分数相加、减:分母不变,只和分子相加、减。

3、利用等底等高的两个三角形面积相等。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、有理数乘法法则:

7、乘方的定义:

8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

14、圆方程

15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

16、被除数÷除数=商

17、被除数=商×除数

18、从个位加起;

19、个位不够减从十位退1,在个位加10再减。

20、末位不管有几个0都不读。

21、角

22、(1)什么是互相垂直?什么是垂线?什么是垂足?

23、加法意义和运算定律

24、什么是被减数?什么是减数?什么叫差?

25、乘法

26、什么是单名数?

27、什么是有限小数?

28、什么是质数(或素数)?

29、什么是分解质因数?

30、怎么比较分数大小?

31、圆的周长总是直径的三倍多一些。

32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

33、求比一个数多(或少)几分之几的数是多少的解题方法

34、亿以内的数的认识:

35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

36、学生在动手操作中,可以画出并能计算出图形的周长。

37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、推论 三角形两边的差小于第三边

41、推论2 三角形的一个外角等于和它不相邻的两个内角的和

42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

44、直角三角形斜边上的中线等于斜边上的一半

45、矩形判定定理2 对角线相等的*行四边形是矩形

46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角

47、菱形判定定理2 对角线互相垂直的*行四边形是菱形

48、正方形性质定理1 正方形的四个角都是直角,四条边都相等

49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

50、等腰梯形的两条对角线相等

51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

52、不含任何元素的集合叫做空集,记为

53、一个加数=和+另一个加数

54、商中间或末尾有0的除法:

55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)

57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

59、比值通常用分数、小数和整数表示。

60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

63、当1和任何字母相乘时,“ 1” 省略不写.

64、检验,写答语

65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

68、知识点概述

69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

70、数学名词。一组具有某种共同性质的数学元素:有理数的~。

71、判断函数奇偶性忽略定义域致误

72、函数零点定理使用不当致误

73、忽视三视图中的实、虚线致误

74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

76、2空间几何体的三视图和直观图

77、判断两*面*行的方法有三种:

78、3.1直线与*面垂直的判定

79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

81、被开方数一定是非负数.

82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

83、整式与分式

84、一元二次方程的二次函数的关系

85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

87、*行四边形判定定理4

88、矩形性质定理2

89、菱形判定定理1

90、正方形性质定理1

91、等腰梯形判定定理

92、性质定理1

93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

96、切线长定理

97、圆的外切四边形的两组对边的和相等

98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

99、扇形面积公式:S扇形=n兀R^2/360=LR/2

100、列方程解应用题的常用公式:


高二数学知识点归纳 40句菁华(扩展2)

——数学知识点 50句菁华

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


高二数学知识点归纳 40句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


高二数学知识点归纳 40句菁华(扩展4)

——八年级上册数学知识点 50句菁华

1、全等图形:能够完全重合的两个图形就是全等图形。

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、边边边公理(SSS)有三边对应相等的两个三角形全等

4、定理2到一个角的两边的距离相同的点,在这个角的*分线上

5、推论1等腰三角形顶角的*分线*分底边并且垂直于底边

6、推论1三个角都相等的三角形是等边三角形

7、定理1关于某条直线对称的两个图形是全等形

8、逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

9、推论夹在两条*行线间的*行线段相等

10、矩形判定定理1有三个角是直角的四边形是矩形

11、菱形判定定理2对角线互相垂直的*行四边形是菱形

12、定理1关于中心对称的两个图形是全等的

13、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

14、与一条线段两个端点距离相等的点,在线段的垂直*分线上

15、三角形三条边的垂直*分线相交于一点,这个点到三角形三个顶点的距离相等

16、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

17、等边三角形的判定:

18、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

19、定理1 在角的*分线上的点到这个角的两边的距离相等

20、推论3 等边三角形的各角都相等,并且每一个角都等于60°

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、关于坐标轴、原点的对称点:

23、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

24、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

25、公式与性质:

26、要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。

27、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

28、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

29、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用*滑曲线连接各点)。

30、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

31、完全*方公式

32、同底数幂的除法

33、分组分解法:

34、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

35、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

36、作为最后结果,如果是分式则应该是最简分式.

37、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

38、函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.

39、二者之间存在着从属关系。2、存在条件相同。3、0的算术*方根与*方根都是0

40、二元一次方程组

41、二元一次方程组的解

42、*均数

43、中位数与众数

44、从统计图分析数据的集中趋势

45、数据的离散程度

46、函数的三种表示法及其优缺点

47、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、

48、对角线互相*分的四边形是*行四边形;

49、对角线相等的*行四边形是矩形。

50、实数的绝对值:


高二数学知识点归纳 40句菁华(扩展5)

——初中七年级数学知识点 50句菁华

1、线段的中点:

2、角的表示

3、角的度量

4、角的*分线

5、方程

6、等式的性质

7、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

8、扇形统计图

9、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

10、两直线*行的条件:(角的关系线的*行)

11、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

12、事件的分类:,会求各种事件的概率

13、必然事件不可能事件,不确定事件

14、C

15、ADBCADBC180°—∠1—∠2∠3+∠4

16、证明:

17、有,AB∥CD

18、如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.

19、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。

20、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

21、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

22、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

23、有理数加法的运算律:

24、有理数乘方的法则:

25、混合运算法则:先乘方,后乘除,最后加减.

26、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

27、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

28、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

30、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

31、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(

32、同级运算,从左到右进行。

33、系数;一个单项式中,数字因数叫做这个单项式的系数。

34、多项式:几个单项式的和叫做多项式。

35、项:组成多项式的每个单项式叫做多项式的项。

36、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

37、π是常数,因此也可以作为系数。它不是未知数。

38、整数和分数统称为有理数(rational number)。

39、有理数中仍然有:乘积是1的两个数互为倒数。

40、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

41、把多项式中的同类项合并成一项,叫做合并同类项。

42、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

43、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

44、把等式一边的某项变号后移到另一边,叫做移项。

45、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

46、几何体简称为体(solid)。

47、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

48、角∠(angle)也是一种基本的几何图形。

49、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

50、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary


高二数学知识点归纳 40句菁华(扩展6)

——《核舟记》知识点归纳 40句菁华

1、诎右臂支船 (“诎”通“屈”,弯曲。)

2、舟首尾长约八分有奇 为字共三十有四 (“有”通“又”,用来连接整数和零数)

3、而计其长曾不盈寸。(曾:古义:尚,还。今义:曾经。)

4、舟首尾长约八分有奇(奇:古义:零数。今义:奇数。)

5、以至鸟兽、木石。(以至:古义:以及。今义:连词,用在下半句的开头,表示下文是前半句所说的动作、情况等所形成的。)

6、中峨冠而多髯者为东坡 (峨冠:名词用作动词,戴着高高的帽子)

7、曰:①叫做(明有奇巧人曰王叔远)②是(文曰“初*山人”,)

8、者:①……的人(中峨冠而多髯者为东坡)②……的(两膝)(其两膝相比者)

9、为:①雕刻(为宫室;盖简桃核修狭者为之)②是(中轩敞者为舱;中峨冠而多髯者为东坡。)③刻有(为人五;为窗八;为箬篷,为楫,为炉,为壶,为手卷,为念珠各一。为字共三十有四)

10、之:①的(能以径寸之木)②代船舱(箬篷覆之)③指窗户(闭之)④指刻字的凹处(石青糁之)⑤指竖起的左膝(左臂挂念珠倚之)

11、奇:①qí奇妙(明有奇巧人曰王叔远)②jī零数(舟首尾长约八分有奇)

12、云:①句尾语气助词,可不译(盖大苏泛赤壁云)②说(孔子云)

13、省略句:

14、通计一舟,为人五;为窗八。(数词后置)

15、整体感知:

16、该工艺品艺术的精湛主要表现在哪些地方?

17、“闭’字和“启”字相应,一启一闭说明了什么?

18、《赤壁赋》《后赤壁赋》的作者是宋代大作家苏轼。“山高月小,水落石出”是《后赤壁赋》中的句子;“清风徐来,水波不兴”是《赤壁赋》中的句子。

19、黄庭坚是宋朝的文学家,字鲁直 。

20、点明核舟主题的句子是 盖大苏泛赤壁云 。

21、第三段中作者以对人物姿态、神情的生动细腻的描述,具体说明雕刻人“罔不因势象形,各具情态。”(从第一段文字中找)的精湛技艺。

22、从第四段对右边舟子的描述中可以看出他 轻松悠闲 的神态,而左边舟子的神态则显得 专注*静 。

23、中峨冠而多髯者为东坡髯:两腮的胡须,这里泛指胡须

24、虞山王毅叔远甫刻甫:古代男子的美称,多附于表字之后

25、其色墨墨:黑

26、其色丹丹:朱红色

27、为人五;为窗八为:刻

28、而计其长曾不盈寸曾:尚,还盈:满

29、通计一舟,为人五,为窗八

30、盖简桃核修狭者为之

31、原来是挑了一个长而狭的桃核刻成的。

32、曾经赠给我一只用果核雕成的船。

33、其两膝相比者,各隐卷底衣褶中

34、其人视端容寂,若听茶声然若听茶声然

35、约八分有奇

36、为:为宫室、器皿、人物(雕刻)

37、而:中峨冠而多髯者为东坡(连词,表并列,并且)

38、居右者椎髻仰面(名词作动词,梳着椎形发髻)

39、省略句

40、雕刻者为什么在小窗上刻上“山高月小,水落石出”“清风徐来,水波不兴”?


高二数学知识点归纳 40句菁华(扩展7)

——高二生物知识点 40句菁华

1、前期

2、中期

3、光合作用酶:是指与光合作用有关的一系列酶,主要存在于叶绿体中。

4、诱导酶:指环境中存在某种物质的情况下才合成的酶,如大肠杆菌细胞中分解乳糖的酶。

5、蛋白质的基本单位_氨基酸,其基本组成元素是C、H、O、N

6、肽键数=脱去的水分子数=_氨基酸数—肽链数

7、多肽分子量=氨基酸分子量x氨基酸数—x水分子数18

8、DNA的基本组成单位:脱氧核苷酸;RNA的基本组成单位:核糖核苷酸

9、细胞的主要能源物质是糖类,直接能源物质是ATP。

10、细胞中含有最多的化合物:水。

11、被多数学者接受的细胞膜模型叫流动镶嵌模型

12、具有双层膜的细胞器:线粒体、叶绿体;

13、细胞内液:指细胞内的液体。包括细胞质基质、细胞核基质、细胞器基质。

14、细胞外液:指存体内在于细胞外的液体。包括血浆、组织液、淋巴。

15、组织液:指体内存在于组织细胞间隙的液体。成分与血浆相近。是组织细胞生活的内环境。

16、淋巴:指存在于淋巴管内的液体。是淋巴细胞的生活的内环境。

17、渗透压:

18、内环境PH值维持稳定的调节:

19、赤潮:在海洋中发生富营养化现象。

20、病毒具有细胞结构,属于生命系统。

21、没有线粒体就不能进行有氧呼吸。

22、线粒体能将葡萄糖氧化分解成CO2和H2O。

23、细胞膜中只含糖蛋白,不含载体蛋白、通道蛋白。

24、测量的CO2量、O2量为实际光合作用强度。

25、氧气浓度越低越有利于食品蔬菜保鲜、种子储存。

26、温度越高农作物产量越高。

27、酶只能在细胞内发生催化作用。

28、细胞都能增殖、都能进行DNA复制,都能发生基因突变。

29、生物的遗传物质都是DNA。

30、细胞分化时遗传物质发生改变。

31、哺乳动物成熟红细胞有细胞核或核糖体。

32、*只要产生就能与卵细胞*。

33、基因只位于染色体上。

34、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。观察染色体组型的时期是有丝分裂的中期。

35、性别决定:一般是指雌雄异体的生物决定性别的方式。

36、性别决定的类型:

37、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。

38、(探究加酶洗衣粉的洗涤效果实验)基础知识

39、种群是生物进化的基本单位

40、突变和基因重组产生进化的原材料

相关词条