1、方程的概念:
2、解一元一次方程的步骤:
3、*行四边形的性质
4、一组邻边相等的*行四边形是菱形(rhombus)。
5、定义:圆是到定点的距离等于定长的点的集合
6、绝对值:
7、判定:
8、对称性:*行四边形是中心对称图形。
9、正数(positionnumber):大于0的数叫做正数。
10、0既不是正数也不是负数。
11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
12、倒数
13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。
14、近似数(approximatenumber):
15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。
16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。
17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。
19、*行线的性质:
20、*行线的判定:
21、三角形的分类
22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
30、1.1三角形的边
31、1.3三角形的稳定性
32、相反数
33、绝对值 |a|0.
34、*方根
35、无理数的比较大小:
36、减法:减去一个数等于加上这个数的相反数;
37、1 从算式到方程
38、等式两边加(或减)同一个数(或式子),结果仍相等。
39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
40、2 直线、射线、线段
——初一数学上册知识点总结 50句菁华
1、课后及时复习,温故而知新
2、正方体的*面展开图:
3、数轴:
4、有理数的运算:
5、添括号法则
6、直线的性质
7、圆:
8、等式的性质
9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).
10、角∠(angle)也是一种基本的几何图形.
11、等角的补角相等,等角的余角相等.
12、方程:含有未知数的等式就叫做方程.
13、解:解出所列方程.
14、有理数的概念
15、不等式解集的表示方法:
16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
17、一元一次不等式与一次函数的综合运用:
18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
19、解一元一次不等式组的步骤:
20、过一点有且只有一条直线和已知直线垂直
21、直线外一点与直线上各点连接的所有线段中,垂线段最短
22、两直线*行,内错角相等
23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半
25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线
26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。
27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
28、几何图形的组成
29、点动成线,线动成面,面动成体。
30、①直线公理:过两点有且只有一条直线.
31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
32、培养学生获取信息,分析问题,处理问题的能力。
33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。
34、大于0的数是正数。
35、规定了原点,单位长度,正方向的直线称为数轴。
36、数的大小比较:
37、若a+b=0,则a,b互为相反数
38、乘除:同号得正,异号的负
39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
40、实数大小的比较:利用法则比较大小;利用数轴比较大小。
41、相遇问题:速度和×相遇时间=路程和
42、追赶问题:速度差×追赶时间=追赶距离
43、商品销售问题
44、储蓄问题
45、多项式:;
46、把多项式中的同类项合并成一项,叫做合并同类项;
47、方程的概念:
48、去分母
49、列方程解应用题的一般步骤:
50、任何数同零相乘都得零;
——数学知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、利用等底等高的两个三角形面积相等。
3、利用特殊规律
4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
5、大于0的数叫做正数。
6、在正数前面加上负号“-”的数叫做负数。
7、整数和分数统称为有理数。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、一个加数=和—另一个加数
10、被减数=减数+差
11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、进行检验,写出答案。
14、加法意义和运算定律
15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
17、求一个数的几分之几是多少?(用乘法)
18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
19、同角或等角的补角相等
20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半
21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
22、乘法分配律:a × b + a × c = a ×(b + c)
23、知道除法算式中各部分的名称:被除数、除数、商。
24、被除数末尾0前面能被除尽,0应写在4的下方。
25、除法的应用p44
26、单价、数量、总价p45、46
27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
31、比的后项不能为0。
32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
33、解比例式
34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)
35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
36、数的分类及概念数系表:
37、绝对值:①定义(两种):
38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
39、求函数的最值与值域的区别和联系
40、定义
41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。
42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
43、调查方式:
44、韦达定理
45、三角形内角和定理:
46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
48、相似三角形判定定理1
49、正n边形的每个内角都等于(n-2)×180°/n
50、弧长计算公式:L=n兀R/180——》L=nR
——高二数学知识点归纳 40句菁华
1、有穷数列与无穷数列:
2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
3、等比数列中,若m+n=p+q,则
4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。
6、向量的数量积:
7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
8、不等式证明的依据
9、不等式的证明方法
10、交集;
11、逻辑连结词;
12、反函数;
13、对数的运算性质;
14、等比数列及其通顶公式;
15、同角三角函数的基本关系式;
16、已知三角函数值求角;
17、斜三角形解法举例。
18、*面向量的坐标表示;
19、不等式的证明;
20、不等式的解法;
21、直线的倾斜角和斜率;
22、直线方程的点斜式和两点式;
23、直线方程:
24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
25、位置关系的证明(主要方法):注意立体几何证明的书写
26、常见函数的导数公式:①;②;③;
27、导数的应用:
28、四种命题:
29、逻辑联结词:
30、面积、体积最(大)问题
31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
34、三角形三角关系:A+B+C=180°;C=180°-(A+B);
35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin
36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.
37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:
39、,,成等差数列
40、一元二次不等式解法:
——中考数学知识点 60句菁华
1、一元二次方程3x2+5x-2=0的常数项是-2.
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3、反比例函数的图象在第一、三象限
4、经过圆心*分弦的直径垂直于弦。
5、直线与圆有唯一公共点时,叫做直线与圆相切。
6、三角形的外接圆的圆心叫做三角形的外心。
7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]
8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
9、指数
10、乘法公式:(正、逆用)
11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
12、样本容量:样本中个体的数目。
13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)
14、线段的中点及表示
15、角(*角、周角、直角、锐角、钝角)
16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
17、重要辅助线
18、作图:任意等分线段。
19、一元一次方程的解法:去分母→去括号→移项→合并同类项→
20、行程问题(匀速运动)
21、增长率问题:
22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
23、"等积"变"比例","比例"找"相似"。
24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
25、各象限内点的坐标的特点
26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
28、圆的定义(两种)
29、垂径定理及其推论
30、五种位置关系及判定与性质:(重点:相切)
31、两圆的公切线:⑴定义⑵性质
32、扇形面积公式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、y的变化值与对应的x的变化值成正比例,比值为k
35、当x=0时,b为函数在y轴上的截距。
36、k,b与函数图像所在象限:
37、当时间t一定,距离s是速度v的一次函数。s=vt。
38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)
39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
42、“三点定圆”定理
43、“等对等”定理及其推论
44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。
45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
48、解方程原理:天**衡。
49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
50、*行四边形面积公式推导:剪拼、*移
51、数不仅可以用来表示数量和顺序,还可以用来编码。
52、身份证码: 18 位
53、重心到顶点的距离与重心到对边中点的距离之比为2:1。
54、直角坐标系中,点A(3,0)在y轴上。
55、当x=-1时,函数y=的值为1.
56、函数y=-8x是一次函数。
57、函数y=4x+1是正比例函数。
58、反比例函数的图象在第一、三象限。
59、cos30= 。
60、勾股定理:两直角边*方和等于斜边*方
——高一生物知识点归纳 60句菁华
1、减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。
2、减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。
3、对于进行有性生殖的生物来说,减数分裂和*作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的
4、培养基的成分一般都含有水、碳源、氮源、无机盐P14
5、设置对照的主要目的是排除实验组中非测试因素对实验结果的影响。提高实验结果的可信度。①如何证明培养基是否受到污染:实验组的培养基中接种要培养的微生物,对照组中的培养基接种等量的蒸馏水(设置空白对照)。②如何证明某选择培养基是否有选择功能:实验组中的培养基用该选择培养基,对照组中培养基用普通培养基(牛肉膏蛋白胨培养基)。如果普通培养基的菌落数明显大于选择培养基中的数目,则说明该选择培养基有选择功能。
6、如何分离分解尿素的细菌?培养基中以尿素为唯一氮源,加入酚红指示剂,如果PH升高,指示剂变红,可初步鉴定该菌能分解尿素。
7、如何分离分解纤维素的微生物?以纤维素为唯一碳源的培养基。
8、纤维素酶是一种复合酶,至少包括三组分:C1酶、CX酶和葡萄糖苷酶。前两种酶使纤维素分解成纤维二糖,第三种酶将纤维二糖分解成葡萄糖。
9、固定化酵母细胞时,酵母细胞的活化用蒸馏水;配制海藻酸钠溶液时,加热要用小火,或者间断加热;要将海藻酸钠溶液冷却至室温,再加入活化的酵母细胞。CaCl2溶液有利于凝胶珠形成稳定的结构。
10、线粒体结构特点:具有双层膜结构,外膜是*滑而连续的界膜,内膜反复延伸折入内部空间,形成嵴。线粒体具有半自主性,腔内有成环状的DNA、少量RNA和核糖体,它们都能自行分化,但是部分蛋白质还要在胞质内合成。线粒体基质和线粒体内膜上含有呼吸作用有关的酶。
11、溶酶体结构特点:溶酶体是由高尔基体断裂产生,单层膜包裹的小泡。功能:是“消化车间”,含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒、病菌。
12、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。
13、遗传物质应具备的特点:
14、①遗传物质的载体有:染色体、线绿体、叶绿体。
15、过敏:抗体吸附在皮肤,黏膜,血液中的某些细胞表面,再次进入人体后使细胞释放组织胺等物质.
16、水肿:组织液浓度高于血液
17、在细胞有丝分裂过程中纺锤丝或星射线周围聚集着很多细胞器这种细胞器物理状态叫线粒体——提供能量
18、基因自由组合时间:简数一次分裂、*作用
19、物理诱导:离心,震动,电刺激
20、获得性免疫缺陷病——艾滋(*)
21、冬小麦在秋冬低温条件下细胞活动减慢物质消耗减少单细胞内可溶性还原糖的含量明显提高细胞自由水比结合水的比例减少活动减慢是适应环境的结果
22、红螺菌属于兼性营养型生物,既能自养也能异养
23、青霉菌产生青霉素青霉素能杀死细菌、放线菌杀不死真菌。
24、生物体都有生长、发育和生殖的现象。
25、叶绿体是绿色植物叶肉细胞中进行光合作用的细胞器。
26、内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。
27、细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。
28、植物细胞特有的细胞器是质体。
29、动物和低等植物细胞特有的细胞器是中心体。
30、根尖分生区细胞没有的细胞器是叶绿体、中心体、液泡。
31、具膜结构的细胞器:单层膜的细胞器有液泡、内质网、高尔基体、溶酶体;双层膜的细胞器有线粒体、叶绿体;不具膜结构的细胞器有核糖体、中心体。
32、膜结构之间的联系;直接联系;内质网向内与外层核膜相连,向外与细胞膜相连,代谢旺盛时,内质网膜与线粒体外膜相连。间接联系:内质网以“出芽”方式形成的小泡,可以和高尔基体融合,高尔基体以同样方式形成的小泡可和细胞膜融合。
33、具有核酸的细胞器有线粒体、叶绿体、核糖体。
34、参与细胞分裂的细胞器有核糖体(间期蛋白质的合成)、中心体(中心粒发出星射线构成纺锤体)、高尔基体(与植物细胞分裂末期纺锤体的形成有关)、线粒体(为细胞分裂提供能量)。
35、不同生物无氧呼吸的产物不同,其原因在于催化反应的酶不同。动物和人体无氧呼吸的产物是乳酸。微生物的无氧呼吸称为发酵,但动植物的无氧呼吸不能称为发酵。2.原核生物无线粒体,但有些原核生物仍可进行有氧呼吸。
36、呼吸作用产生的能量大部分以热能形式散失,对动物可用于维持体温。
37、水稻等植物长期水淹后烂根的原因:无氧呼吸的产物酒精对细胞有毒害作用。玉米种子烂胚的原因:无氧呼吸产生的乳酸对细胞有毒害作用。
38、以上的根据是葡萄糖有氧呼吸和无氧呼吸的方程式,不包括其他有机物质。考点3影响细胞呼吸的因素及其应用1.内因:遗传因素(决定酶的种类和数量)
39、B瓶应封口放置一段时间,待酵母菌将B瓶中的氧气消耗完,再连通盛有澄清石灰水的锥形瓶,确保通入澄清石灰水中的CO2是由无氧呼吸产生的。【方法例析】对比实验和对照实验
40、影响酶作用的因素
41、病毒(Virus)是一类没有细胞结构的生物体。主要特征:
42、叶绿体只存在于植物的绿色细胞中。扁*的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。
43、内质网:在结构上内连核膜,外连细胞膜;功能:①增大细胞内的膜面积②是细胞内蛋白质合成和加工,以及脂质合成的车间(内质网是蛋白质空间结构形成的场所)
44、核糖体:无膜结构,是合成蛋白质的场所。附着在内质网上的核糖体合成的是胞外蛋白(即分泌蛋白如消化酶、胰岛素、生长激素、抗体等);游离的核糖体合成的是胞内蛋白(如呼吸氧化酶、血红蛋白等)。
45、液泡:单层膜,成熟的植物有中央大液泡。功能:贮藏(营养、色素等)、保持细胞形态
46、均有DNA和RNA,且均以DNA为遗传物质。
47、氨基转换作用:氨基酸的氨基转给其他化合物(如:丙酮酸),形成的新的氨基酸(是非必需氨基酸)。
48、消化:淀粉经消化后分解成葡萄糖,脂肪消化成甘油和脂肪酸,蛋白质在消化道内被分解成氨基酸。
49、糖类没有N元素要转变成氨基酸,进而形成蛋白质,必须获得N元素,就可以通过氨基转换作用形成。蛋白质要转化成糖类、脂类就要去掉N元素,通过脱氨基作用。
50、利用实验操作的方法导入新课。
51、传递信息,调节机体的生命活动(胰岛素)
52、构成生物体的蛋白质的20种氨基酸的结构通式为:NH2-C-COOH
53、氨基酸数=肽键数+肽链数
54、材料:大肠杆菌
55、基本条件:
56、原则:碱基互补配对原则
57、意义:将遗传信息从亲代传给子代,从而保持遗传信息的连续性
58、参与细胞内许多生物化学反应;
59、水是细胞生活的液态环境;
60、持生物体的生命活动,细胞的形态和功能;
——生物知识点归纳 50句菁华
1、生物具有的共同特征:
2、生态系统
3、显微镜的应用
4、细胞核在生物遗传中的作用
5、绿色开花植物的六大器官
6、染色体的组成蛋白质分子和基因分子
7、生物的生殖细胞中染色体是成单存在的,基因也是成单存在的。
8、植物细胞壁的主要成分:纤维素和果胶;功能:对植物细胞有支持和保护的作用。
9、叶绿体只存在于植物的绿色细胞中。扁*的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。
10、、人体主要内分泌腺的位置和名称:垂体、甲状腺、胰岛、肾上腺、性腺、胸腺
11、我们吃的大米主要是胚乳,大米不能萌发时因为无胚。
12、草履虫的结构见课本70页图
13、单细胞生物与人类的关系:有利也有害
14、水存在形式营养物质及代谢废物
15、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色
16、消化:食物的营养成分在消化管内被水解成可吸收的小分子物质的过程。
17、放大倍数=物镜倍数×目镜倍数
18、兴奋在神经纤维上的传导:
19、反射:是指在中枢神经系统的参与下,动物或人体对内外环境变化作出的规律性应答。
20、语言功能:是人脑特有的高级功能,包括与语言、文字有关的全部智力活动,涉及听、说、读、写。
21、效应B细胞没有识别功能
22、能进行光合作用的细胞不一定有叶绿体
23、凝集原:红细胞表面的抗原
24、光反应阶段电子的最终受体是辅酶二
25、水的光解不需要酶,光反应需要酶,暗反应也需要酶
26、将运载体导入受体细胞时运用CaCl2目的是增大细胞壁的通透性
27、高尔基体是蛋白质加工的场所
28、生长激素:垂体分泌→促进生长主要促进蛋白质的合成和骨的生长
29、有丝分裂后期有4个染色体组
30、光能利用率:光合作用时间、光合作用面积、光合作用效率(水,光,矿质元素,温度,二氧化碳浓度)
31、目的基因被误插到受体细胞的非编码区,受体细胞不能表达此性状,而不叫基因重组(插入编码区内叫基因重组)
32、达尔文认为生命进化是由突变、淘汰、遗传造成的
33、生态系统碳循环是指碳元素在生物群落和无机自然界之间不断循环的过程
34、可以说在免疫过程中消灭了抗原而不能说杀死了抗原
35、低血糖:40~60mg正常:80~120mgdL
36、植物的组织培养VS动物个体培养
37、质粒的复制在宿主细胞内(包括自身细胞内)
38、胆汁的作用是物理消化脂类
39、最大的生态系统是生物圈。
40、维持大气中氧气和二氧化碳含量*衡的细胞器有线粒体、叶绿体。
41、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
42、生物学是研究(生命现象)和(生命活动规律)的科学。
43、在一定地域内,(生物)与(环境)所形成的统一的整体叫做(生态系统)。
44、种子萌发需要环境(外界)条件:
45、叶绿体只存在于植物的绿色细胞中。扁*的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。
46、核糖体:无膜结构,是合成蛋白质的场所。附着在内质网上的核糖体合成的是胞外蛋白(即分泌蛋白如消化酶、胰岛素、生长激素、抗体等);游离的核糖体合成的是胞内蛋白(如呼吸氧化酶、血红蛋白等)。
47、高尔基体:主要是对来自内质网的蛋白质进行加工,分类,包装,运输。(动植物细胞共有的细胞器,但功能不同:植物:与细胞壁的形成有关;动物:与细胞分泌物的形成有关)
48、1939年,美国科学家鲁宾(S.Ruben)卡门(M.Kamen)同位素标记法实验证明:光合作用释放的
49、光合作用中色素的吸收峰(P-99图5-10)
50、色氨酸经过一系列反应可转变成生长素。
——高等数学知识点总结 50句菁华
1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
3、掌握不定积分的换元积分法。
4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。
6、会解欧拉方程。
7、能力层面
8、做题之后加强反思。
9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
10、列方程解应用题的常用公式:
11、有理数:①整数→正整数,0,负整数;
12、方程与方程组
13、角
14、同角或等角的补角相等
15、同角或等角的余角相等——余角=90-角度。
16、直线外一点与直线上各点连接的所有线段中,垂线段最短
17、同旁内角互补,两直线*行
18、两直线*行,内错角相等
19、定理
20、三角形内角和定理:
21、推论3
22、全等三角形的对应边、对应角相等
23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
24、*行四边形性质定理1
25、矩形判定定理2
26、菱形性质定理1
27、菱形面积=对角线乘积的一半,即S=(a×b)÷2
28、菱形判定定理2
29、正方形性质定理1
30、等腰梯形判定定理
31、*行线分线段成比例定理
32、相似三角形判定定理1
33、判定定理2
34、性质定理1
35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
36、切线的判定定理
37、圆的外切四边形的两组对边的和相等
38、如果两个圆相切,那么切点一定在连心线上
39、正n边形的每个内角都等于(n-2)×180°/n
40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
41、弧长计算公式:L=n兀R/180——》L=nR
42、绝对值:
43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
44、混合运算法则:先乘方,后乘除,最后加减。
45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
——三年级上册数学知识点总结 40句菁华
1、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
2、公式。(每两个相邻的时间单位之间的进率是60)
3、在计算长度时,只有相同的长度单位才能相加减。
4、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
5、读数和写数(读数时写汉字写数时写*数字)
6、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
7、有4条直的边和4个角封闭图形我们叫它四边形。
8、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
9、四边形的特点:有四条直的边,有四个角。
10、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
11、正方形的特点:有4个直角,4条边相等。
12、公式:
13、连乘的简便计算:
14、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
15、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
16、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
17、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
18、把分数化成小数的方法:用分数的分子除以分母。
19、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
20、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
21、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
22、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
23、*行四边形的特点:对边*行且相等、对角相等。
24、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。
25、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
26、关于0的一些规定:
27、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
28、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
29、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
30、认识整千数(记忆:10个一千是一万)
31、读数和写数(读数时写汉字写数时写*数字)
32、要认真审题,弄清题目要求后再做。
33、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
34、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
35、用乘法口诀求商时,想除数和几相乘等于被除数。
36、用乘法和除法两步计算解决实际问题的方法:
37、正确理解并熟记相邻的面积单位之间的进率。
38、低级单位——高级单位:数量÷它们间的进率
39、速度和=相遇路程÷相遇时间
40、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
——高考数学知识点总结 40句菁华
1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
6、.数量积与两个实数乘积的区别:
7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
11、两条异面直线所成的角的范围:0°<α≤90°< p="">
12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。
16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
21、注意放回抽样,不放回抽样;
22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
25、列举法:{a,b,c……}
26、“包含”关系—子集
27、“相等”关系:A=B (5≥5,且5≤5,则5=5)
28、不含任何元素的集合叫做空集,记为
29、方程k=f(x)有解 k∈D(D为f(x)的值域);
30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
36、集合元素具有
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)
40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;