初一数学上册知识点总结 50句菁华

首页 / 句子 / | 2022-12-02 00:00:00 初一,数学,知识点总结

1、课后及时复习,温故而知新

2、正方体的*面展开图:

3、数轴:

4、有理数的运算:

5、添括号法则

6、直线的性质

7、圆:

8、等式的性质

9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

10、角∠(angle)也是一种基本的几何图形.

11、等角的补角相等,等角的余角相等.

12、方程:含有未知数的等式就叫做方程.

13、解:解出所列方程.

14、有理数的概念

15、不等式解集的表示方法:

16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

17、一元一次不等式与一次函数的综合运用:

18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

19、解一元一次不等式组的步骤:

20、过一点有且只有一条直线和已知直线垂直

21、直线外一点与直线上各点连接的所有线段中,垂线段最短

22、两直线*行,内错角相等

23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。

27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

28、几何图形的组成

29、点动成线,线动成面,面动成体。

30、①直线公理:过两点有且只有一条直线.

31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

32、培养学生获取信息,分析问题,处理问题的能力。

33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

34、大于0的数是正数。

35、规定了原点,单位长度,正方向的直线称为数轴。

36、数的大小比较:

37、若a+b=0,则a,b互为相反数

38、乘除:同号得正,异号的负

39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

40、实数大小的比较:利用法则比较大小;利用数轴比较大小。

41、相遇问题:速度和×相遇时间=路程和

42、追赶问题:速度差×追赶时间=追赶距离

43、商品销售问题

44、储蓄问题

45、多项式:;

46、把多项式中的同类项合并成一项,叫做合并同类项;

47、方程的概念:

48、去分母

49、列方程解应用题的一般步骤:

50、任何数同零相乘都得零;


初一数学上册知识点总结 50句菁华扩展阅读


初一数学上册知识点总结 50句菁华(扩展1)

——六年级数学上册知识点 60句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、两个小数的比,向右移动小数点的位置。也是先化成整数比。

3、3 32

4、条形统计图:可以清楚的看出数据的多少

5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

10、被除数÷除数= 被除数/除数

11、因为零不能作除数,所以分数的分母不能为零。

12、乘法分配律:

13、整数减法计算法则:

14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

15、混合运算用梯等式计算,等号写在第一个数字的左下角。

16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

17、找单位“1”的方法

18、1的倒数是1,0没有倒数。

19、被除数与商的大小关系

20、20是25的几分之几? 20÷25=4/5

21、已知单位“1”用乘法,求单位“1”用除法;

22、工程问题

23、一个数乘分数的意义就是求一个数的几分之几是多少。

24、求一个数的几分之几是多少?(用乘法)

25、什么是速度?

26、求一个数的百分之几是多少。一个数(单位“1”)×百分率

27、已知一个数的百分之几是多少,求这个数。

28、常用统计图的优点:

29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

33、百分数应用:

34、圆的定义:

35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

36、半径为1厘米的圆的周长是3.14厘米。(__)

37、这个月哪项出最多?支出了多少元?

38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

39、常见的百分率的计算方法:

40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

44、除数是整数的小数除法计算法则:

45、圆锥体

46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

47、化简比:化简之后结果还是一个比,不是一个数。

48、比和除法、分数的区别:

49、已知单位“1”的量用乘法。

50、画线段图:

51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

53、比和比例的意义:

54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

55、“数与形相结合”的思想

56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

57、圆的半径越长,这个圆就越大。(__)

58、画一个半径为1厘米的圆。

59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?


初一数学上册知识点总结 50句菁华(扩展2)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


初一数学上册知识点总结 50句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


初一数学上册知识点总结 50句菁华(扩展4)

——六年级上册数学知识点 60句菁华

1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

2、0的绝对值是其本身。

3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

4、除0外,任何数的的0次方等于1。

5、已知单位“1”用乘法计算

6、积与因数的大小关系

7、被除数与商的大小关系

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、图上距离:实际距离=比例尺;

11、图上距离=实际距离×比例尺;

12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、圆内最长的线段是直径。(__)

15、几个直径和为n的圆的周长=直径为n的圆的周长

16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

18、长方形里最大的圆。两者联系:宽=直径

19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

21、生活中的百分率:

22、直接求一个数是另一个数的百分之几一个数÷另一个数

23、已知比一个数多百分之几的数是多少,求这个数

24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

32、小数与百分数互化的规则:

33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

34、分数应用题基本数量关系(把分数看成比)

35、画线段图:

36、如果两个数是互质数,它们的公因数就是1。

37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

38、因为零不能作除数,所以分数的分母不能为零。

39、乘法分配律:

40、减法的性质:

41、圆的面积=圆周率×半径×半径

42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

46、根据比的基本性质,可以把比化成最简单的整数比。

47、化简比:

48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

50、使学生能在方格纸上用数对确定位置;

51、百分数的意义,求一个数是另一个数的百分之几的应用题;

52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的联系:

57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO


初一数学上册知识点总结 50句菁华(扩展5)

——二年级上册数学知识点 50句菁华

1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。

2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。

3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

7、万以内数的读法和写法与1000以内的数读法和写法相同。

8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。

9、“有余数除法”的复习。

10、“方向和路线”的复习。

11、“万以内的加、减法”的复习。

12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。

13、实数

14、轴对称与坐标变化

15、一次函数与正比例函数

16、用二元一次方程组确定一次函数表达式

17、从统计图分析数据的集中趋势

18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

22、差=被减数—减数

23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

24、56页例5

25、探索并掌握两位数减两位数不退位)的计算方法。

26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。

27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。

28、渗透统计的思想和方法。

29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

31、厘米和米

32、笔算减法

33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。

34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

35、观察物体时,要抓住物体的特征来判断。

36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。

40、同分母分数的加减法。(分母不变,分子相加或相减。)

41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点

42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。

43、三角形的面积=底×高÷2:S=ah÷2。

44、长方体的体积=长×宽×高:V=abh。

45、圆柱的侧面积=底面圆的周长×高:S=ch。

46、常用的长度单位:米、厘米。

47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

48、差=被减数-减数

49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

50、乘法算式的写法和读法


初一数学上册知识点总结 50句菁华(扩展6)

——数学七年级上册知识点 50句菁华

1、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。

2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

3、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

4、几何图形

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

6、有理数的运算:

7、添括号法则

8、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

9、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

10、等式的性质

11、有理数的概念

12、负数:小于0的数。

13、数轴的三要素:原点、正方向、单位长度。

14、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

15、先定符号,再算绝对值。

16、乘积是1的两个数互为倒数。

17、乘法交换律:ab=ba

18、乘法分配律:a(b+c)=ab+ac

19、除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

21、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

22、先乘方,再乘除,最后加减。

23、同级运算,从左到右进行。

24、系数;一个单项式中,数字因数叫做这个单项式的系数。

25、常数项:不含字母的项叫做常数项。

26、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

27、2 有理数

28、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

29、大于0的数叫做正数(positivenumber).

30、在直线上任取一个点表示数0,这个点叫做原点(origin).

31、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

32、两个负数,绝对值大的反而小.

33、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.

34、几何图形的投影问题

35、数轴上一点a到原点的距离表示a的绝对值。

36、两个负数,绝对值大的反而小。

37、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。

38、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

39、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

40、科学的记录笔记

41、列代数式

42、利用数轴表示两数大小

43、a可以表示什么数

44、相反数的性质与判定

45、绝对值的几何定义

46、可用字母表示为

47、可归纳为

48、有理数的乘法法则

49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。


初一数学上册知识点总结 50句菁华(扩展7)

——数学知识点 50句菁华

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


初一数学上册知识点总结 50句菁华(扩展8)

——高一生物知识点总结 50句菁华

1、过程:

2、翻译:

3、信使RNA是由DNA的一条链为模板合成的;蛋白质是由信使RNA为模板,每三个核苷酸对应一个氨基酸合成的。公式:基因(或DNA)的碱基数目:信使RNA的碱基数目:氨基酸个数=6:3:1;脱氧核苷酸的数目=的基因(或DNA)的碱基数目;肽键数=脱去水分子数=氨基酸数目—肽链数。

4、寄生:一种生物寄居在另一种生物体的体内或体表,从那里吸取营养物质来维持生活,这种现象叫做~。(例如:蛔虫、绦虫、血吸虫等寄生在其它动物的体内;虱和蚤寄生在其它动物的体表;菟丝子寄生在豆科植物上;噬菌体寄生在细菌内部。)

5、区分共生、竞争和捕食关系的图象。a、共生图象:特点是两种生物个体数量为同步变化,二者同生共死;b、捕食图象,特点是两种生物个体数量变化不同步,先增者先减少,为被捕食者,后增者后减少,为捕食者。被捕食者图象的最高点高于捕食者;c、竞争图象,特点是两种生物开始时个体数量为"同步变化,以后则你死我活。4、决定海洋不同深度植物分布的主要因素是阳光。

6、年龄组成:是指一个种群中各年龄期个体数目的比例。

7、生物群落的结构:是指群落中各种生物在空间上的配置情况,包括垂直结构和水*结构等方面。

8、水*结构:在水*方向上的分区段现象,就是生物群落的水*结构。如:林地中的植物沿着水*方向分布成不同小群落的现象。

9、地球上最大的生态系统是生物圈。

10、海洋生态系统: 整个海洋,类型多,分布各异; 微小浮游植物为主,有大型藻类,各类动物集中于200以上水层,底栖动物适应性特殊。

11、淡水生态系统: 浅水区为水生和沼泽植物,深水区表层为浮游植物,主要有浮游动物、鱼类和底栖动物。

12、抵抗力稳定性:在生物学上就把生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力,称之为抵抗力稳定性。

13、生物圈II号”实验失败说明:生态系统的结构和功能难以像真正的生物圈那样,长期保持相对稳定,具备生态系统的稳定性。

14、抵抗力稳定性与恢复力稳定性之间往往存在着相反的关系。抵抗力稳定性较高的生态系统,恢复力稳定性较低,反之亦然。

15、概念及其反应式

16、动物和低等植物细胞特有的细胞器是中心体。

17、具有核酸的细胞器有线粒体、叶绿体、核糖体。

18、能自我复制的细胞器有线粒体、叶绿体、中心体。

19、植物吸水方式有两种:

20、PH值:过酸、过碱使酶失活

21、绝大多数生物的遗传物质是DNA,只有少数病毒(如烟草花叶病病毒)的遗传物质是RNA,因此说DNA是主要的遗传物质。病毒的遗传物质是DNA或RNA。

22、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质

23、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。

24、细胞内水分减少,新陈代谢速率减慢

25、细胞中染色体数目:

26、细胞中含量最多的6种元素是C、H、O、N、P、Ca(98%)。

27、无机盐

28、元素组成:由C、H、O 3种元素组成。

29、脂肪的鉴定:脂肪可以被苏丹Ⅲ染液染成橘黄色。

30、元素组成:除C、H、O、N外,大多数蛋白质还含有S

31、功能:生命活动的主要承担者。(注意有关蛋白质的功能及举例)

32、蛋白质鉴定:与双缩脲试剂产生紫色的颜色反应

33、细胞壁:主要成分是纤维素,有支持和保护功能。

34、功能:ATP是生命活动的直接能源物质

35、果蔬保鲜时,采用降低氧浓度、充氮气或降低温度等方法,抑制细胞呼吸,注意要保持一定的湿度。

36、举例:草履虫、蛙的红细胞等。

37、植物细胞全能性的概念

38、细胞凋亡的概念:细胞凋亡是细胞的一种重要的生命活动,是一个主动的由基因决定的细胞程序化自行结束生命的过程。也称为细胞程序性死亡。

39、新细胞可以从老细胞中产生。

40、1838—1839年细胞学说

41、有些蛋白质有免疫作用:如抗体。

42、DNA双螺旋结构的主要功能特点是:(1)DNA分子是由两条链组成,这两条链按反向*行方式盘旋成双螺旋结构。(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列内侧。(3)两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫作碱基互补配对原则。

43、由于新陈代谢,每天都有一定数量的无机盐从各种途径排出体外,因而必腨通过膳食予以补充。无机盐的代谢可以通过分析血液、头发、尿液或组织中的浓度来判断。在人体内无机盐的作用相互关联。在合适的浓度范围有益于人和动植物的健康,缺乏或过多都能致病,而疾病又影响其代谢,往往增加其消耗量。在我国钙、铁和碘的缺乏较常见。硒、氟等随地球化学环境的不同,既有缺乏病如克山病和大骨节病、龊齿等,又有过多症如氟骨症和硒中毒。

44、孟德尔成功的原因:正确的选用实验材料;现研究一对相对性状的遗传,再研究两对或多对性状的遗传;应用统计学方法对实验结果进行分析;基于对大量数据的分析而提出假说,再设计新的实验来验证。

45、减数过程中染色体数目减半发生在减数第一次。

46、红绿色盲、抗维生素D佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。

47、基因突变是随机发生的、不定向的。

48、生物对环境的适应,既有普遍性,又具有相对性。因为生物生存的`环境不断变化,而生物的遗传具有保守性,不会因为环境变化立即改变其遗传性,因此适应的形成是长期的自然选择的结果。选择作用不会一次到位,更不会造成尽善尽美的选择结果,所以,适应具有相对性。

49、组成细胞的元素

50、蛋白质的主要功能(生命活动的主要承担者):


初一数学上册知识点总结 50句菁华(扩展9)

——数学分析知识点的总结 40句菁华

1、整式与分式

2、过一点有且只有一条直线和已知直线垂直

3、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

4、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

5、直角三角形斜边上的中线等于斜边上的一半

6、勾股定理

7、勾股定理的逆定理

8、定理2

9、矩形判定定理2

10、菱形性质定理1

11、菱形面积=对角线乘积的一半,即S=(a×b)÷2

12、菱形判定定理2

13、等腰梯形的两条对角线相等

14、梯形中位线定理

15、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

16、性质定理1

17、性质定理2

18、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

19、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

20、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

21、①直线L和⊙O相交

22、切线的判定定理

23、如果两个圆相切,那么切点一定在连心线上

24、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

25、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

26、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

27、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

28、乘方的定义:

29、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

30、空间点、直线、*面的位置关系

31、空间中的垂直问题

32、判断函数奇偶性忽略定义域致误

33、函数零点定理使用不当致误

34、三角函数的单调性判断致误

35、错位相减求和项处理不当致误

36、数列中的最值错误

37、面积体积计算转化不灵活致误

38、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

39、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

40、列方程解应用题的常用公式:


初一数学上册知识点总结 50句菁华(扩展10)

——八年级上册生物知识点总结 30句菁华

1、乳酸菌:用于制酸奶和泡菜。制泡菜时,乳酸菌在没有氧气的条件下,分解糖类产生乳酸。

2、寄生在人体表面或体内,使人患病。如艾滋病就是由一种病毒引起的,它寄生在人体内的淋巴细胞中,使人体免疫能力下降。

3、提供维生素:多数酵母菌含有丰富的维生素,可提供医药用。

4、用于基因工程:涌过基因工程用微生物产胰岛素、乙肝疫苗、干扰素等。

5、在采油、冶金、治理环境污染等方面也有广阔的应用前景。

6、鱼是靠尾鳍的摆动和躯干部扭动获得前进的动力;调整方向用尾鳍,维持身体*衡用胸鳍、背鳍、腹鳍鳍等。

7、蚯蚓的运动是靠肌肉的交替收缩和舒张并在刚毛的辅助下完成的;呼吸是靠湿润的体壁进行的。将两条蚯蚓分别放于光滑的玻璃板和粗糙的硬纸板上,运动速度在硬纸板上的快。

8、昆虫的特点是:身体分为头、胸、腹三部分,胸部有三对足和两对翅。

9、植物细胞与动物细胞的不同点:植物细胞有细胞壁和液泡,动物细胞没有。

10、鸟适于飞行的特点:

11、翼(翅膀)是鸟的飞行器官。气囊辅助肺的呼吸。

12、家鸽喙(就是口)内没有牙齿,食物不经咀嚼经咽、食管进入嗉囊。————进入肌胃(内有沙粒、小石子用于磨碎食物)。

13、生物是一个偏文的学科,因此有些知识点一定要记扎实,“当背则背”,没有商量的余地。它不像数学、物理,掌握一个公式、定理,就能在做题是有很大的发挥空间。生物往往会要求你一字

14、推动生物不断进化的原因是自然选择。

15、生物性状的变异是普遍存在的,变异不一定都是有利的。

16、有性生殖:由两性生殖细胞结合成*卵发育成新个体的生殖方式。如:用种子繁殖

17、陆地环境特点与陆生动物的适应:①气候干燥……有防止体内水分散失的结构,如角质的鳞或甲,外骨骼. ②缺少水的浮力……具支持躯体和运动的器官.有多种运动方式. ③气态氧供呼吸……具能在空气中呼吸的、位于身体内部的呼吸器官,如肺和气管(蚯蚓例外,靠体表呼吸) ④昼夜温差大,环境变化快而复杂……有发达的感官和神经系统,对多变环境及时作出反应

18、身体由许多相似的环状体节构成的动物叫环节动物,如蚯蚓、沙蚕、水蛭

19、恒温动物:可通过自身的调节而维持体温的恒定,使体温不随外界的变化而变化的动物,包括鸟类和哺乳动物.反之,体温随环境温度变化而改变的动物是变温动物,如蛇、昆虫等。

20、足够的食物、水分、隐蔽地是陆生动物生存的基本环境条件

21、两栖动物:幼体生活在水中,用鳃呼吸,经变态发育成为成体,营水陆两栖生活,用肺呼吸,同时用皮肤辅助呼吸

22、骨骼肌包括中间较粗的肌腹和两端较细的肌腱,一组肌肉的两端分别附着在不同骨上.骨骼肌受神经刺激后有收缩的特性

23、按行为表现不同可将动物行为分为取食行为、防御行为、繁殖行为、迁徙行为等;而按获得途径不同可分为先天性行为和学习行为。先天性行为指动物生来就有的、由体内遗传物质决定的行为,对维持最基本的生存必不可少,如蜘蛛织网等。而学习行为则是指在遗传因素的基础上,通过环境的作用,由生活经验和学习而获得的行为。动物越高等,学习能力越强,适应环境能力也就越强,对生存也就越有意义

24、动物可供人类食用、药用、观赏用等,与生物反应器和仿生关系密切

25、陆地环境特点与陆生动物的适应:

26、胸肌、龙骨突发达——适于完成飞行动作

27、骨骼中空——可减轻身体比重

28、体内有气囊

29、食量大,消化吸收能力强

30、昆虫的`外骨骼是覆盖在昆虫身体表面的坚韧的外壳,有保护和支持内部柔软器官、防止体内水分蒸发的作用。

相关词条