数学圆知识点总结 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学,知识点总结

1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

2、定理:一条弧所对的圆周角等于它所对的圆心角的一半

3、①直线L和⊙O相交d﹤r

4、推论:经过切点且垂直于切线的直线必经过圆心

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

6、圆的外切四边形的两组对边的和相等

7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

8、①两圆外离d﹥R+r

9、正三角形面积√3a2/4a表示边长

10、弧长计算公式:L=n兀R/180

11、圆心决定圆的位置,半径决定圆的大小。

12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

14、两个数相除,又叫做这两个数的比。比的后项不能为0.

15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、定理相交两圆的连心线垂直*分两圆的公共弦

20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

22、内公切线长= d-R-r外公切线长= d-R+r

23、定理一条弧所对的圆周角等于它所对的圆心角的一半

24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

26、一条弧所对的圆周角等于它所对的圆心角的一半。

27、圆的面积S=πr

28、圆锥侧面积S=rl

29、圆的标准方程

30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

33、圆的周长C=2πr=πd

34、圆锥侧面积S=πrl

35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

36、①直线L和⊙O相交 d

37、切线的性质定理 圆的切线垂直于经过切点的半径

38、正n边形的每个内角都等于(n-2)×180°/n

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学圆知识点总结 40句菁华扩展阅读


数学圆知识点总结 40句菁华(扩展1)

——初中数学重要知识点总结 40句菁华

1、求不等式的解集的过程,叫做解不等式。

2、用数轴表示不等式的方法。

3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

5、一元一次不等式组的解法

6、不等式与不等式组

7、列一元一次方程解应用题:

8、混合运算法则:先乘方,后乘除,最后加减。

9、代数式

10、解一元二次方程的步骤:

11、角

12、同角或等角的余角相等——余角=90-角度。

13、过一点有且只有一条直线和已知直线垂直

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、同位角相等,两直线*行

16、同旁内角互补,两直线*行

17、推论

18、三角形内角和定理:

19、推论1

20、直角三角形斜边上的中线等于斜边上的一半

21、矩形性质定理1

22、菱形性质定理2

23、三角形中位线定理

24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

26、性质定理1

27、性质定理2

28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

31、切线的性质定理

32、①两圆外离

33、弧长计算公式:L=n兀R/180——》L=nR

34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

35、切线的性质定理圆的切线垂直于经过切点的半径

36、推论1经过圆心且垂直于切线的直线必经过切点

37、定理相交两圆的连心线垂直*分两圆的公共弦

38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正三角形面积√3a/4a表示边长

40、弧长计算公式:L=n兀R/180


数学圆知识点总结 40句菁华(扩展2)

——数学知识点总结 40句菁华

1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

3、2.1直线与*面*行的判定

4、2.2*面与*面*行的判定

5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

6、2.3—2.2.4直线与*面、*面与*面*行的性质

7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。

8、定理:垂直于同一个*面的两条直线*行。

9、Venn图:

10、“相等”关系:A=B(5≥5,且5≤5,则5=5)

11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

12、圆的外部可以看作是圆心的距离大于半径的点的集合

13、到已知角的两边距离相等的点的轨迹,是这个角的*分线

14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

15、定理不在同一直线上的三点确定一个圆。

16、圆是以圆心为对称中心的中心对称图形

17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

19、切线的性质定理:圆的切线垂直于经过切点的半径

20、弦切角定理:弦切角等于它所夹的弧对的圆周角

21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

22、弧长计算公式:L=n兀R/180

23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

25、圆方程

26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

30、集合的分类:有限集,无限集,空集。

31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

32、根据自变量的取值范围对函数进行分段.

33、空间中的*行问题

34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

35、忽视集合元素的三性致误

36、函数的单调区间理解不准致误

37、三角函数的单调性判断致误

38、对数列的定义、性质理解错误

39、数列中的最值错误

40、忽视三视图中的实、虚线致误


数学圆知识点总结 40句菁华(扩展3)

——数学中考圆的知识点 40句菁华

1、反证法

2、圆的定义

3、直线圆的与置位关系

4、线直与圆有唯公一共时,点做直叫与圆线切

5、弦切角于所等夹弧所对的的圆心角

6、圆切线垂的直过切于点半径

7、弧、优弧、劣弧

8、圆的轴对称性

9、圆心角

10、弧、弦、弦心距、圆心角之间的关系定理

11、切线长定理

12、圆和圆的位置关系

13、圆心距

14、圆和圆位置关系的性质与判定

15、中心角

16、正多边形的定义

17、正多边形的画法

18、圆锥的侧面积

19、圆有无数条半径,有无数条直径。

20、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

21、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

22、分数乘分数是求一个数的几分之几是多少。

23、求分数的倒数是交换分子分母的位置。

24、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

25、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

26、如果两个圆相切,那么切点一定在连心线上

27、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

28、如果在一个顶点周围有k个正n边形的'角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

29、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径

30、制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

31、独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。

32、直线与圆的位置关系

33、到角两边距离相等的点的轨迹是:角的*分线;

34、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

35、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2

36、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2

37、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。

38、环形的周长=外圆周长+内圆周长

39、半圆面积=圆面积÷2公式为:S=πr2÷2

40、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。


数学圆知识点总结 40句菁华(扩展4)

——中考数学知识点 60句菁华

1、一元二次方程3x2+5x-2=0的常数项是-2.

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3、反比例函数的图象在第一、三象限

4、经过圆心*分弦的直径垂直于弦。

5、直线与圆有唯一公共点时,叫做直线与圆相切。

6、三角形的外接圆的圆心叫做三角形的外心。

7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

9、指数

10、乘法公式:(正、逆用)

11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

12、样本容量:样本中个体的数目。

13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)

14、线段的中点及表示

15、角(*角、周角、直角、锐角、钝角)

16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

17、重要辅助线

18、作图:任意等分线段。

19、一元一次方程的解法:去分母→去括号→移项→合并同类项→

20、行程问题(匀速运动)

21、增长率问题:

22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

23、"等积"变"比例","比例"找"相似"。

24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

25、各象限内点的坐标的特点

26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

28、圆的定义(两种)

29、垂径定理及其推论

30、五种位置关系及判定与性质:(重点:相切)

31、两圆的公切线:⑴定义⑵性质

32、扇形面积公式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、y的变化值与对应的x的变化值成正比例,比值为k

35、当x=0时,b为函数在y轴上的截距。

36、k,b与函数图像所在象限:

37、当时间t一定,距离s是速度v的一次函数。s=vt。

38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

42、“三点定圆”定理

43、“等对等”定理及其推论

44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。

45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

48、解方程原理:天**衡。

49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

50、*行四边形面积公式推导:剪拼、*移

51、数不仅可以用来表示数量和顺序,还可以用来编码。

52、身份证码: 18 位

53、重心到顶点的距离与重心到对边中点的距离之比为2:1。

54、直角坐标系中,点A(3,0)在y轴上。

55、当x=-1时,函数y=的值为1.

56、函数y=-8x是一次函数。

57、函数y=4x+1是正比例函数。

58、反比例函数的图象在第一、三象限。

59、cos30= 。

60、勾股定理:两直角边*方和等于斜边*方


数学圆知识点总结 40句菁华(扩展5)

——初中数学知识点总结 50句菁华

1、同角或等角的余角相等——余角=90-角度。

2、推论1

3、推论2

4、*行四边形性质定理3

5、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

6、点、线、面、体

7、生活中的立体图形

8、线段的性质

9、角的度量

10、①直线L和⊙O相交

11、切线的性质定理

12、有理数减法:减去一个数,等于加上这个数的相反数。

13、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

14、内公切线长=d-(R-r)

15、高线、中线、角*分线的意义和做法

16、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。

17、直角三角形中,30°角所对的直角边等于斜边的一半。

18、多边形的内角:多边形相邻两边组成的角叫做它的内角。

19、公式与性质

20、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

21、推论2经过切点且垂直于切线的直线必经过圆心

22、扇形面积公式:S扇形=n兀R^2/360=LR/2

23、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

24、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

25、函数图象的最低点和最高点.

26、在正数前面加上负号“-”的数叫做负数。

27、邻边相等的矩形。

28、过一点有且只有一条直线和已知直线垂直。

29、推论2三角形的一个外角等于和它不相邻的两个内角的和。

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

31、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合。

32、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合。

33、*行四边形性质定理1*行四边形的对角相等。

34、矩形判定定理1有三个角是直角的四边形是矩形。

35、菱形判定定理1四边都相等的四边形是菱形。

36、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

37、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

38、圆是定点的距离等于定长的点的集合。

39、定理一条弧所对的圆周角等于它所对的圆心角的一半。

40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

41、推论2经过切点且垂直于切线的直线必经过圆心。

42、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

43、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

44、运算法则(加、减、乘、除、乘方、开方)

45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。

46、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

47、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

48、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

49、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。

50、不等式的解法:


数学圆知识点总结 40句菁华(扩展6)

——小学数学知识点 50句菁华

1、加减混合运算:

2、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

3、从高位起,按照顺序写;

4、哪一位上乘得的积满几十就向前进几。

5、万级的数要按个级的读法来读,再在后面加上一个“万”字;

6、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

7、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

8、检验、写出答案。

9、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

10、公式(每两个相邻的时间单位之间的进率是60):

11、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

12、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

13、在计算长度时,只有相同的长度单位才能相加减。

14、公式:

15、多位数乘一位数(进位)的笔算方法:

16、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

17、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

18、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

19、先看图,再填空★★★ ★★★ ★★★ ★★★

20、数一数

21、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

22、物体的表面或封闭图形的大小,就是他们的面积。

23、边长1分米的正方形面积是1*方分米。

24、边长1千米(1000米)的正方形面积是1*方千米。

25、长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽

26、学会用“正”字记录数据。

27、解决有关*均分问题的方法:

28、汽车在笔直的公路上行驶,车身的运动是( )现象

29、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

30、小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

31、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

32、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

33、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

34、10个一千是一万。

35、(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

36、已知一个数的百分之几是多少,求这个数。

37、利率

38、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

39、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

40、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

41、加数+加数=和和-一个加数=另一个加数

42、学会用加法解决简单的实际问题。

43、搭积木(十几加(减)几的加减法)知识点:(1)用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

44、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

45、连加:多个数字连续相加叫做连加。例如:28+24+23=85

46、连减:多个数字连续相减叫做连减。例如:85-40-26=19

47、加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

48、圆的周长总是直径的三倍多一些。

49、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

50、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

相关词条