数学知识点 50句菁华

首页 / 句子 / | 2022-12-02 00:00:00 数学

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


数学知识点 50句菁华扩展阅读


数学知识点 50句菁华(扩展1)

——数学知识点 100句菁华

1、公式。(每两个相邻的时间单位之间的进率是60)

2、①相同分母的分数相加、减:分母不变,只和分子相加、减。

3、利用等底等高的两个三角形面积相等。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、有理数乘法法则:

7、乘方的定义:

8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

14、圆方程

15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

16、被除数÷除数=商

17、被除数=商×除数

18、从个位加起;

19、个位不够减从十位退1,在个位加10再减。

20、末位不管有几个0都不读。

21、角

22、(1)什么是互相垂直?什么是垂线?什么是垂足?

23、加法意义和运算定律

24、什么是被减数?什么是减数?什么叫差?

25、乘法

26、什么是单名数?

27、什么是有限小数?

28、什么是质数(或素数)?

29、什么是分解质因数?

30、怎么比较分数大小?

31、圆的周长总是直径的三倍多一些。

32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

33、求比一个数多(或少)几分之几的数是多少的解题方法

34、亿以内的数的认识:

35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

36、学生在动手操作中,可以画出并能计算出图形的周长。

37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、推论 三角形两边的差小于第三边

41、推论2 三角形的一个外角等于和它不相邻的两个内角的和

42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

44、直角三角形斜边上的中线等于斜边上的一半

45、矩形判定定理2 对角线相等的*行四边形是矩形

46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角

47、菱形判定定理2 对角线互相垂直的*行四边形是菱形

48、正方形性质定理1 正方形的四个角都是直角,四条边都相等

49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

50、等腰梯形的两条对角线相等

51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

52、不含任何元素的集合叫做空集,记为

53、一个加数=和+另一个加数

54、商中间或末尾有0的除法:

55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)

57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

59、比值通常用分数、小数和整数表示。

60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

63、当1和任何字母相乘时,“ 1” 省略不写.

64、检验,写答语

65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

68、知识点概述

69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

70、数学名词。一组具有某种共同性质的数学元素:有理数的~。

71、判断函数奇偶性忽略定义域致误

72、函数零点定理使用不当致误

73、忽视三视图中的实、虚线致误

74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

76、2空间几何体的三视图和直观图

77、判断两*面*行的方法有三种:

78、3.1直线与*面垂直的判定

79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

81、被开方数一定是非负数.

82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

83、整式与分式

84、一元二次方程的二次函数的关系

85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

87、*行四边形判定定理4

88、矩形性质定理2

89、菱形判定定理1

90、正方形性质定理1

91、等腰梯形判定定理

92、性质定理1

93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

96、切线长定理

97、圆的外切四边形的两组对边的和相等

98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

99、扇形面积公式:S扇形=n兀R^2/360=LR/2

100、列方程解应用题的常用公式:


数学知识点 50句菁华(扩展2)

——中考数学知识点 50句菁华

1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

2、直角坐标系中,点A(3,0)在轴上。

3、直角坐标系中,点A(-2,3)在第四象限。

4、直角坐标系中,点A(-2,1)在第二象限。

5、数据1,2,3,4,5的中位数是3.

6、cs30°=。

7、sin260°+cs260°=1.

8、tan45°=1.

9、任意一个三角形一定有一个外接圆。

10、同圆或等圆的半径相等。

11、经过圆心*分弦的直径垂直于弦。

12、非负数:正实数与零的统称。(表为:x≥0)

13、相反数:①定义及表示法

14、奇数、偶数、质数、合数(正整数-自然数)

15、单项式与多项式

16、系数与指数

17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

19、科学记数法:(1≤a<10,n是整数=

20、个体:总体中每一个考察对象。

21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。

22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

24、一次函数

25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

27、圆的定义(两种)

28、正多边形及计算

29、圆柱、圆锥的侧面展开图及相关计算

30、作法与图形:通过如下3个步骤

31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

32、抛物线是轴对称图形。对称轴为直线

33、一次项系数b和二次项系数a共同决定对称轴的位置。

34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

35、用待定系数法求二次函数的解析式

36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

37、见直径往往作直径上的'圆周角

38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

40、(P11)小数四则运算顺序跟整数是一样的。

41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。

42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

43、方程的解是一个数;

44、长方形框架拉成*行四边形,周长不变,面积变小。

45、5 4 0 0 1

46、重心是三角形内到三边距离之积最大的点。

47、sin260+ cos260= 1.

48、tan45= 1.

49、cos60+ sin30= 1.

50、直角三角形两个锐角互余。


数学知识点 50句菁华(扩展3)

——小学数学知识点 50句菁华

1、加减混合运算:

2、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

3、从高位起,按照顺序写;

4、哪一位上乘得的积满几十就向前进几。

5、万级的数要按个级的读法来读,再在后面加上一个“万”字;

6、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

7、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

8、检验、写出答案。

9、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

10、公式(每两个相邻的时间单位之间的进率是60):

11、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

12、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

13、在计算长度时,只有相同的长度单位才能相加减。

14、公式:

15、多位数乘一位数(进位)的笔算方法:

16、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

17、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

18、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

19、先看图,再填空★★★ ★★★ ★★★ ★★★

20、数一数

21、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

22、物体的表面或封闭图形的大小,就是他们的面积。

23、边长1分米的正方形面积是1*方分米。

24、边长1千米(1000米)的正方形面积是1*方千米。

25、长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽

26、学会用“正”字记录数据。

27、解决有关*均分问题的方法:

28、汽车在笔直的公路上行驶,车身的运动是( )现象

29、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

30、小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

31、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

32、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

33、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

34、10个一千是一万。

35、(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

36、已知一个数的百分之几是多少,求这个数。

37、利率

38、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

39、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

40、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

41、加数+加数=和和-一个加数=另一个加数

42、学会用加法解决简单的实际问题。

43、搭积木(十几加(减)几的加减法)知识点:(1)用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

44、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

45、连加:多个数字连续相加叫做连加。例如:28+24+23=85

46、连减:多个数字连续相减叫做连减。例如:85-40-26=19

47、加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

48、圆的周长总是直径的三倍多一些。

49、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

50、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。


数学知识点 50句菁华(扩展4)

——六年级上册数学知识点总结 40句菁华

1、圆的定义:圆是由曲线围成的一种*面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

7、圆周率实验:

8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

10、取近似数的方法:

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

13、比例的基本性质是在比例里两内项积等于两外项积。

14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

18、分子分母是互质数的分数叫做最简分数。

19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

21、整数除法计算法则:

22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

26、小数的倒数:

27、各类地形中,什么地形面积?什么最小?

28、这个月哪项出最多?支出了多少元?

29、小数点位置的移动引起小数大小的变化

30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

31、减法的性质:

32、整数乘法计算法则:

33、小数乘法法则:

34、同分母分数加减法计算方法:

35、异分母分数加减法计算方法:

36、小数除法的意义

37、、长方形

38、、长方体

39、三角形

40、圆形


数学知识点 50句菁华(扩展5)

——数学初中全部重要知识点总结 40句菁华

1、方程与方程组

2、点,线,面

3、角

4、同角或等角的补角相等

5、同角或等角的余角相等——余角=90-角度。

6、如果两条直线都和第三条直线*行,这两条直线也互相*行

7、同位角相等,两直线*行

8、内错角相等,两直线*行

9、三角形内角和定理:

10、角边角公理(

11、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

12、等腰三角形的性质定理

13、多边形内角和定理

14、*行四边形性质定理2

15、*行四边形性质定理3

16、*行四边形判定定理4

17、菱形判定定理1

18、等腰梯形性质定理

19、*行线分线段成比例定理

20、相似三角形判定定理1

21、判定定理2

22、性质定理1

23、性质定理3

24、圆的外部可以看作是圆心的距离大于半径的点的集合

25、切线的判定定理

26、切线的性质定理

27、正n边形的每个内角都等于(n-2)×180°/n

28、扇形面积公式:S扇形=n兀R^2/360=LR/2

29、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

30、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

31、列方程解应用题的常用公式:

32、反证法

33、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

34、中被开方数的取值范围:被开方数a≥0

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、相反数:

37、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

38、有理数加法法则:

39、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

40、有理数乘法的运算律:


数学知识点 50句菁华(扩展6)

——数学五年级知识点 40句菁华

1、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3

3、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。

4、分数的意义两种解释:①把单位“1”*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

5、除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

6、多边形面积的计算。

7、205≈2.21 (保留两位小数)

8、先算乘除,再算加减

9、有括号的先算括号内

10、真分数和假分数、带分数

11、带分数:带分数由整数和真分数组成的分数。带分数>1.

12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

13、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。

14、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )

15、含有未知数的算式叫做方程。( )

16、5x表示5个x相乘。( )

17、一个三角形,底a缩小5倍,*扩大5倍,面积就缩小10倍。( )

18、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,7天可以收割多少公顷?60.4公顷大豆需要多少天才能收完

19、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?

20、乘法交换律:axb=bxa

21、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

22、【体积单位换算】

23、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

24、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

25、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。

26、常用时间单位:时、分、秒。

27、计算小数乘法末尾对齐,按整数乘法法则进行计算。

28、把因数的位置交换相乘

29、用计算器来验算

30、长方形的周长=(长+宽)×2 C=(a+b)×2

31、长方形的面积=长×宽S=ab

32、圆的面积=圆周率×半径×半径

33、镜子内外的左右方向是相反的。

34、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。

35、运动场的跑道,通常1圈是400米,2圈半是1000米。

36、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

37、常用长度单位:米、分米、厘米、毫米、千米。

38、公式:

39、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

40、因数×因数=积积÷一个因数=另一个因数


数学知识点 50句菁华(扩展7)

——高考数学知识点总结 40句菁华

1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

6、.数量积与两个实数乘积的区别:

7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

11、两条异面直线所成的角的范围:0°<α≤90°< p="">

12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。

16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。

21、注意放回抽样,不放回抽样;

22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

25、列举法:{a,b,c……}

26、“包含”关系—子集

27、“相等”关系:A=B (5≥5,且5≤5,则5=5)

28、不含任何元素的集合叫做空集,记为

29、方程k=f(x)有解 k∈D(D为f(x)的值域);

30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

36、集合元素具有

37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

相关词条