1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
6、.数量积与两个实数乘积的区别:
7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
11、两条异面直线所成的角的范围:0°<α≤90°< p="">
12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。
16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
21、注意放回抽样,不放回抽样;
22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
25、列举法:{a,b,c……}
26、“包含”关系—子集
27、“相等”关系:A=B (5≥5,且5≤5,则5=5)
28、不含任何元素的集合叫做空集,记为
29、方程k=f(x)有解 k∈D(D为f(x)的值域);
30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
36、集合元素具有
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)
40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
——初中数学知识点总结 100句菁华
1、如果两条直线都和第三条直线*行,这两条直线也互相*行
2、两直线*行,同旁内角互补
3、角边角公理(
4、定理3
5、勾股定理
6、*行四边形性质定理2
7、*行四边形判定定理3
8、矩形判定定理1
9、矩形判定定理2
10、几种几何图形的重心:
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、乘方的定义:
13、*行于三角形的一边,并且和其他两边相交的直线,
14、相似三角形判定定理1
15、混合运算法则:先乘方,后乘除,最后加减。
16、几何图形
17、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
18、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
19、性质定理3
20、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
21、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
22、圆是定点的距离等于定长的点的集合
23、圆的外部可以看作是圆心的距离大于半径的点的集合
24、同圆或等圆的半径相等
25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、角的度量
29、角的*分线
30、角的性质
31、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
32、①直线L和⊙O相交
33、一元一次方程
34、切割线定理
35、有理数加法
36、正三角形面积√3a^2/4
37、弧长计算公式:L=n兀R/180——》L=nR
38、列一元一次方程解应用题:
39、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
40、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
41、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
42、三角形内角和定理:三角形三个内角的和等于180°
43、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
44、等腰三角形的判定:等角对等边。
45、等边三角形的判定:三个角都相等的三角形是等腰三角形。
46、s菱=争6(n、6分别为对角线长)
47、单项式的系数:是指单项式中的数字因数;
48、对称性:等腰梯形是轴对称图形
49、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
50、推论2经过切点且垂直于切线的直线必经过圆心
51、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
52、扇形面积公式:S扇形=n兀R^2/360=LR/2
53、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
54、求出每段的解析式.
55、函数图象的最低点和最高点.
56、一元一次方程根的情况
57、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
58、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
59、大于0的数叫做正数。
60、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
61、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
62、四边形
63、图形的*移和旋转
64、统计
65、如果两条直线都和第三条直线*行,这两条直线也互相*行。
66、同位角相等,两直线*行。
67、两直线*行,内错角相等。
68、推论1直角三角形的两个锐角互余。
69、推论2三角形的一个外角等于和它不相邻的两个内角的和。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、定理四边形的内角和等于360°。
72、*行四边形性质定理1*行四边形的对角相等。
73、*行四边形性质定理2*行四边形的对边相等。
74、*行四边形判定定理4一组对边*行相等的四边形是*行四边形。
75、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
76、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
77、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰。
78、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
79、性质定理2相似三角形周长的比等于相似比。
80、圆的内部可以看作是圆心的距离小于半径的点的集合。
81、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧。
82、推论2圆的两条*行弦所夹的弧相等。
83、圆是以圆心为对称中心的中心对称图形。
84、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
85、定理相交两圆的连心线垂直*分两圆的公共弦。
86、弧长计算公式:L=n兀R/180。
87、乘法与因式分解
88、三角不等式
89、判别式:
90、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
91、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
92、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
93、*行:两条直线不相交。互相*行的两条直线,互为*行线。a∥b(在同一*面内,不相交的两条直线叫做*行线。)
94、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
95、证明:推理的过程叫做证明。
96、坐标:数轴(或*面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
97、原点:两个数轴的交点叫做*面直角坐标系的原点。
98、特殊位置的点的坐标的特点:
99、三大规律
100、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
——高等数学知识点总结 50句菁华
1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
3、掌握不定积分的换元积分法。
4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。
6、会解欧拉方程。
7、能力层面
8、做题之后加强反思。
9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
10、列方程解应用题的常用公式:
11、有理数:①整数→正整数,0,负整数;
12、方程与方程组
13、角
14、同角或等角的补角相等
15、同角或等角的余角相等——余角=90-角度。
16、直线外一点与直线上各点连接的所有线段中,垂线段最短
17、同旁内角互补,两直线*行
18、两直线*行,内错角相等
19、定理
20、三角形内角和定理:
21、推论3
22、全等三角形的对应边、对应角相等
23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
24、*行四边形性质定理1
25、矩形判定定理2
26、菱形性质定理1
27、菱形面积=对角线乘积的一半,即S=(a×b)÷2
28、菱形判定定理2
29、正方形性质定理1
30、等腰梯形判定定理
31、*行线分线段成比例定理
32、相似三角形判定定理1
33、判定定理2
34、性质定理1
35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
36、切线的判定定理
37、圆的外切四边形的两组对边的和相等
38、如果两个圆相切,那么切点一定在连心线上
39、正n边形的每个内角都等于(n-2)×180°/n
40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
41、弧长计算公式:L=n兀R/180——》L=nR
42、绝对值:
43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
44、混合运算法则:先乘方,后乘除,最后加减。
45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
——数学知识点总结 40句菁华
1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
3、2.1直线与*面*行的判定
4、2.2*面与*面*行的判定
5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
6、2.3—2.2.4直线与*面、*面与*面*行的性质
7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
8、定理:垂直于同一个*面的两条直线*行。
9、Venn图:
10、“相等”关系:A=B(5≥5,且5≤5,则5=5)
11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.
12、圆的外部可以看作是圆心的距离大于半径的点的集合
13、到已知角的两边距离相等的点的轨迹,是这个角的*分线
14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
15、定理不在同一直线上的三点确定一个圆。
16、圆是以圆心为对称中心的中心对称图形
17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
19、切线的性质定理:圆的切线垂直于经过切点的半径
20、弦切角定理:弦切角等于它所夹的弧对的圆周角
21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
22、弧长计算公式:L=n兀R/180
23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
25、圆方程
26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
30、集合的分类:有限集,无限集,空集。
31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
32、根据自变量的取值范围对函数进行分段.
33、空间中的*行问题
34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
35、忽视集合元素的三性致误
36、函数的单调区间理解不准致误
37、三角函数的单调性判断致误
38、对数列的定义、性质理解错误
39、数列中的最值错误
40、忽视三视图中的实、虚线致误
——六年级上册数学知识点 60句菁华
1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。
2、0的绝对值是其本身。
3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
4、除0外,任何数的的0次方等于1。
5、已知单位“1”用乘法计算
6、积与因数的大小关系
7、被除数与商的大小关系
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、图上距离:实际距离=比例尺;
11、图上距离=实际距离×比例尺;
12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、圆内最长的线段是直径。(__)
15、几个直径和为n的圆的周长=直径为n的圆的周长
16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2
18、长方形里最大的圆。两者联系:宽=直径
19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。
20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。
21、生活中的百分率:
22、直接求一个数是另一个数的百分之几一个数÷另一个数
23、已知比一个数多百分之几的数是多少,求这个数
24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。
28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
32、小数与百分数互化的规则:
33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
34、分数应用题基本数量关系(把分数看成比)
35、画线段图:
36、如果两个数是互质数,它们的公因数就是1。
37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
38、因为零不能作除数,所以分数的分母不能为零。
39、乘法分配律:
40、减法的性质:
41、圆的面积=圆周率×半径×半径
42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)
46、根据比的基本性质,可以把比化成最简单的整数比。
47、化简比:
48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
50、使学生能在方格纸上用数对确定位置;
51、百分数的意义,求一个数是另一个数的百分之几的应用题;
52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
56、比和比例的联系:
57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO
——语文高考知识点总结 50句菁华
1、举:有席卷天下,包举宇内,囊括四海之意(并吞)
2、作难:一夫作难而七庙隳(起事,起义)
3、固:秦孝公据崤函之固(形作名,坚固的地方)
4、却:却匈奴七百余里(使动,使退却)
5、贤:非有仲尼墨翟之贤(形作名,贤能的人)
6、虚词(18个虚词的用法和意义)
7、多音多义字。这类字音主要有两种:一是词性不同,读音不同,如“乐”,作名词时读“yuè”,如“乐队”,作动词或形容词时读“lè”,如“乐意”;二是意思不同,读音不同,如“供”与“供应”义有关时,读 “ɡōnɡ”;与“上供、案供”义有关时,则读“ɡònɡ”。
8、既在广阔的历史背景上引出阿房宫的修建,又起到了笼盖全篇、暗示主题的作用的句子是:六王毕,四海一;蜀山兀,阿房出。
9、用高超的手法描写动人的音乐:
10、写清风明月为吾享用的句子:惟江上之清风,与山间之明月,耳得之而为声,目遇之而成色。7.写清风与明月可尽情享用,无人禁止,无穷无尽的句子:取之无禁,用之不竭。
11、《离骚》中表明自己所处的社会本来就是善于投机取巧,违背规矩的现状的两句:
12、《离骚》中屈原用荷花表明自己要修养自己的两句:制芰荷以为衣兮,集芙蓉以为裳。
13、李白在《蜀道难》一诗中指出逶迤千里的蜀道,还有更为奇险的风光。诗人先用“连峰去天不盈尺,枯松倒挂倚绝壁。”托出山势的高险,然后由静而动,“飞湍瀑流争喧豗,砯崖转石万壑雷”写出水石激荡、山谷空鸣的场景。
14、杜甫《登高》中集中表现了夔州秋天的典型特征的句子是:风急天高猿啸哀,渚清沙白鸟飞回。前人也曾把这两句誉为“古今独步”的“句中化境”。
15、具体描写“江山如画”之意的句子是:乱石穿空,惊涛拍岸,卷起千堆雪。
16、乃令张仪佯去秦,厚币委质事楚
17、入则与王图议国事,以出号令;出则接遇宾客,应对诸侯
18、明道德之广崇
19、厚币委质事楚
20、传:
21、与科考有关的:贡举、第、登第、中第、状元、解元、乡试
22、表敬重的:敬、重、尊、恭
23、表俸禄的:俸、禄、秩、饷
24、叙写江水流逝却始终长流不息,月亮盈亏却无所增减的哲理的句子:逝者如斯,而未尝往也,盈虚者如彼,而卒莫消长也。
25、《离骚》中写自己虽崇尚美德约束自己,多少年仍然遭到贬黜的两句:余虽好修姱以鞿羁兮,謇朝谇而夕替。
26、情景交融,意境旷达,极写自己羁旅之愁和孤独之感的句子是:万里悲秋常作客,百年多病独登台。
27、孔子师郯子(师:名作动,拜师学习)
28、是故弟子不必不如师,师不必贤于弟子,闻道有先后,术业有专攻,如是而已。
29、居高声自远,非是藉秋风。(虞世南)
30、长风破浪会有时,直挂云帆济沧海(李白)
31、喝墨水:形容知识的多少。
32、安时处顺——安于常分,顺其自然,形容满足于现状。
33、青,取之于蓝,而青于蓝;冰,水为之,而寒于水。(《荀子"劝学》)
34、外无期功强近之亲,内无应门五尺之僮,茕茕孑立,形影相吊。(李密《陈情表》)
35、夫六国与秦皆诸侯,其势弱于秦,而犹有可以不赂而胜之之势。苟以天下之大,而从六国破亡之故事,是又在六国下矣。(苏洵《六国论》)
36、落“花”流“水”传愁绪
37、天下云集响应,赢粮而景从。
译:天下的人像云一样聚集响应,(许多人)担着干粮如影随形地跟着(陈涉)。
38、断句
建议(1)关注分值,与之匹配。
(断句处数一般是分值2倍或3倍数,偶尔也会是倍数加一)
(2)关注标志性词语(如下几个方面)
①虚词
②实词
③修辞标志:
顶针(顶真)、排比、对偶、反复
④固定句式:(看见前要寻找后)
如…何;得无…乎;何…为
建议:
①高屋建瓴,通读1、2次再判断;
②掌握大意,勿因关注标志而忽视内容。
39、注意形容词和名词同时出现的地方,判断两者是否存在修饰关系,再观察其位置是否倒装。
高考语文必考知识点:古代诗词鉴赏与默写(12-13分)
考查内容:形象、语言、技巧、内容情感
40、成语(熟语)的几大注意事项:
(1)勿望文生义,
如“望其项背——能够望见别人的颈项和背脊,表示赶得上或比得上”
“三人成虎——三个人谎报城市里有老虎,听的人就信以为真。比喻说的人多了,就能使人们把谣言当事实。”
(2)分清对象,
如“车水马龙—车辆、人流”
“徐娘半老—中年妇女”
(3)分清色彩,(褒/贬、谦/敬)
如“弹冠相庆—贬义”“班门弄斧—谦辞”
(4)注意语境,(意义会变化)
如“相濡以沫——泉水干了,两条鱼吐沫互相润湿。也比喻一同在困难的处境里,用微薄的力量互相帮助,只为了保住生命。”
“短小精悍——形容人身躯短小,精明强悍。也形容文章或发言简短而有力。”
建议:把遇到的成语按以上各类作好标记。可以加强复习效果。
41、叙写江水流逝却始终长流不息,月亮盈亏却无所增减的哲理的句子:
逝者如斯,而未尝往也,盈虚者如彼,而卒莫消长也。
42、夫天者,人之始也;父母者,人之本也。人穷则反本,故劳苦倦极,未尝不呼天也;疾痛惨怛,未尝不呼父母也。
(天是人类的起源,父母是人的根本。人处于困境就会追念本源,所以到了极其劳苦疲倦的时候,没有不叫天的;遇到病痛或忧伤的时候,没有不叫父母的。)
43、《师说》中士大夫之族耻学于师的原因:彼与彼年相若也,道相似也,位卑则足羞,官盛则近谀。
(四)《阿房宫赋》
44、是故无贵无贱,无长无少,道之所存,师之所存也。
译:所以无论高贵还是低贱,不分年纪大还是年龄小,道存在的地方,就是老师在的地方。
45、形似字。
指一些字形整体相似,细微处略有差别的字。如“籍、藉”,“肓、盲”。形似字的差别主要表现在:
(1)笔画相同而形状不同。如“天、夭”,“干、千”等。
(2)笔画相同而结构安排不同。如“未、末”,“土、士”;“子、孑”;“戊、戌、戍”等。
(3)笔画数目不同。如“戈、弋”,“候、侯”,“贪、贫”,等。
(4)部首、偏旁不同。如“惴、湍、端、瑞”和“稗、碑、啤、睥、裨”等。
46、别时“长亭”“柳”依依
在古典诗词里,杨柳常常与离情相关联,《诗经》中的《采薇》便写道:“昔我往矣,杨柳依依;今我来思,雨雪霏霏。”柔弱的杨柳摇摆不定的形体,最能传递亲友离别时依依难舍之情。此外,“柳”与“留”也谐音。长亭为古人送别之场所,因此也是送别诗中经常出现的意象。柳永的《雨霖铃》同时写到了这两种意象,分别是“寒蝉凄切,对长亭晚。”以及“今宵酒醒何处,杨柳岸晓风残月。”
47、同音字
有些字字形迥异,读音却相同,而有些字字形近似,读音却有别,在同音字中混杂有易误读为同音字的字,让人一时难以分辨。
例如,“翌日”“对弈”“肄业”“造诣”“洋溢”“游弋”“屹立”“压抑”“驿站”“瘟疫”“后裔”“双翼”“懿德”中加点的字均读“yì”,其中受“溢、镒、缢”等字形的影响,“隘、谥”易误读为“yì”。其实,“隘”读“ài”,“谥”读“shì”,若把“隘”或“谥”混放入读“yì”的同音字中,让考生判断,这是一种对识别能力的考查。
48、汉魏晋诗三首
一、掌握下列重点词语
49、《寡人之于国也》:文章记述梁惠王向孟子请教自己尽心于民,但民并没有增多的原因,孟子以战争中士卒逃跑,五十步笑百步为喻,对他进行驳斥。然后提出自己的政治主张,劝说梁惠王施行仁政,役使农民不要违农时,使百姓有吃有穿,受到教化。
写作特色:结构严谨:每部分结尾的一句话既对每一部分的内容起了画龙点睛的作用,又体现了各部分之间的内在联系,把全文各部分连成了一个有机的整体。善用比喻:全文从设喻开始,又以设喻结束,前后呼应,所用的比喻又都在“王好战,请以战喻”的范围内,手法高超。气势宏伟,节奏感很强:文中多处运用排比和对偶,文章读起来不仅气势磅礴,而且琅琅上口。
50、配对字。
如:“缥缈(飘渺)”不能写成“缥渺”,“朦胧”不能写作“曚胧”等。
练习
完成全国Ⅰ、Ⅱ卷和安徽卷的字形题。
二、字形辨别的技巧。
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单独的一个数字是单项式,它的系数是它本身。
4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
5、单项式的系数包括它前面的符号。
6、单项式的系数是带分数时,应化成假分数。
7、单项式的系数是1或―1时,通常省略数字“1”。
8、几个单项式的和叫做多项式。
9、一个多项式有几项,就叫做几项式。
10、多项式中次数最高的项的次数,叫做这个多项式的次数。
11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
15、此法则也可以逆用,即:amn =(am)n=(an)m。
16、此法则也可以逆用,即:anbn=(ab)n。
17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
19、相同字母的幂相乘时,底数不变,指数相加。
20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
22、单项式与单项式、多项式相乘的.法则。
23、三角形
24、常见的轴对称图形有:
25、(1)等腰三角形:对称轴,性质
26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。
30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
31、垂直三要素:垂直关系,垂直记号,垂足
32、垂直公理:过一点有且只有一条直线与已知直线垂直。
33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
35、命题:判断一件事情的语句叫命题。
36、无理数
37、相反数
38、实数与数轴上点的关系:
39、算术*方根
40、注重预习培养自学能力
——数学分析知识点总结 40句菁华
1、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
2、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
3、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
4、韦达定理
5、一元二次方程根的情况
6、两点之间线段最短
7、同旁内角互补,两直线*行
8、三角形内角和定理:
9、推论3
10、全等三角形的对应边、对应角相等
11、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
12、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
13、圆是定点的距离等于定长的点的集合
14、代数式
15、整式与分式
16、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
17、如果两条直线都和第三条直线*行,这两条直线也互相*行
18、边边边公理(SSS):有三边对应相等的两个三角形全等
19、定理1
20、等腰三角形的判定定理
21、勾股定理的逆定理
22、*行四边形性质定理1
23、*行四边形性质定理2
24、*行四边形判定定理4
25、矩形性质定理2
26、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
27、梯形中位线定理
28、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
29、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
30、性质定理2
31、同圆或等圆的半径相等
32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
33、到已知角的两边距离相等的点的轨迹,是这个角的*分线
34、①直线L和⊙O相交
35、切线长定理
36、弦切角定理
37、弧长计算公式:L=n兀R/180——》L=nR
38、集合表示方法①列举法;②描述法;③韦恩图;④数轴法
39、元素的互异性;
40、集合的表示:{…}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
——高二数学知识点归纳 40句菁华
1、有穷数列与无穷数列:
2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
3、等比数列中,若m+n=p+q,则
4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。
6、向量的数量积:
7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
8、不等式证明的依据
9、不等式的证明方法
10、交集;
11、逻辑连结词;
12、反函数;
13、对数的运算性质;
14、等比数列及其通顶公式;
15、同角三角函数的基本关系式;
16、已知三角函数值求角;
17、斜三角形解法举例。
18、*面向量的坐标表示;
19、不等式的证明;
20、不等式的解法;
21、直线的倾斜角和斜率;
22、直线方程的点斜式和两点式;
23、直线方程:
24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
25、位置关系的证明(主要方法):注意立体几何证明的书写
26、常见函数的导数公式:①;②;③;
27、导数的应用:
28、四种命题:
29、逻辑联结词:
30、面积、体积最(大)问题
31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
34、三角形三角关系:A+B+C=180°;C=180°-(A+B);
35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin
36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.
37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:
39、,,成等差数列
40、一元二次不等式解法:
——高考语文必背知识点总结 40句菁华
1、宠辱不惊,闲看庭前花开花落;去留无意,漫随天外云卷云舒。(《菜根谭》)
2、夕云乍起日沉阁,山雨欲来风满楼。(许浑)
3、宁可枝头抱香死,何曾吹落北风中(郑思肖)
4、蓊蓊郁郁:多形容草木蓬勃茂盛的样子。
5、急不暇择:在紧急的情况下来不及选择。
6、君子博学而日参省乎己。古义:广泛地学习,今义:学问广博精深
7、古之学者必有师。 古义:求学的人 今义:指在学术上有一定成就的人。
8、吾从而师之。 古义:跟随、而且 今义:表目的或结果的连词
9、今之众人。 古义:一般人 今义:许多人
10、归去来兮辞 陶渊明
11、阿房宫赋 杜牧
12、登高 杜甫
13、归园田居 陶渊明
14、豁然开朗:从黑暗狭窄变得宽敞明亮。比喻突然领悟了一个道理。
15、卓有成效:有突出的成绩和效果。
16、永垂不朽:指光辉的事迹和伟大的精神永远流传,不会磨灭。
17、无济于事:对事情没有什么帮助或益处。比喻不解决问题。
18、摇摇欲坠:形容十分危险,很快就要掉下来,或不稳固,很快就要*。
19、策
20、致
21、北
22、师道之不传也久矣(动词,从师)
23、巫医乐师百工之人(名词,有专门技艺的人)
24、师道之不传也久矣(动词,流传)
25、六艺经传皆通习之(名词,古代解释经书的书)
26、朔气传金柝(动词,传递,传送)
27、其闻道也亦先乎吾(代词,他,他们)
28、传其道解其惑者也(代词,前指老师的;后指学生的)
29、夫庸知其年之先后生于吾乎(代词,指“闻道先乎吾”的人)
30、不拘于时(介词,表被动,被)
31、句读之不知(助词,宾语前置的标志)
32、师道之不复,可知矣(结构助词。取消独立性)
33、吾欲之南海(动词,到、往)
34、江山代有才人出,各领风骚数百年(赵翼)
1.蓊蓊郁郁:多形容草木蓬勃茂盛的样子。
35、及
①非及向时之士(比得上,动词)
②及至秦始皇(到,等到,介词)
36、度
①内立法度(制度,名词)
②试使山东之国与陈涉度长絜大(量长短)
文言虚词
之:
(1)助词,的。鹏之背,不知其几千里也/其翼若垂天之云(助词,的)
(2)助词,主谓之间取消句子独立性。鹏之徙于南冥也/生物之以息相吹也/且夫水之积也不厚
(3)代词,它。而莫之夭阏者
(4)代词,他。且举世誉之而不加劝(指宋荣子)众人匹之,不亦悲乎(指彭祖)
(5)代词,这些。之二虫又何知
(6)动词,到,往。奚以之九万里而南为
而:
(1)连词,表修饰。怒而飞/抟扶摇而上者九万里/决起而飞
(2)连词,表转折。而宋荣子犹然笑之/且举世誉之而不加劝/而彭祖乃今以久特闻
(3)连词,表并列。若夫乘天地之正,而御六气之辩
(4)连词,表承接。而控于地而已矣
则:
(1)连词,就。海运则将徙于南冥
(2)连词,或者。时则不至
(3)连词,那么。则其负大舟也无力
然:
(1)奚以知其然也(代词,这样)
(2)虽然,犹有未树也(代词,这样)、
(3)未数数然也(形容词词尾,……的样子)
以:
(1)介词,把。以五百岁为春
(2)介词,用。生物之以息相吹也
(3)介词,凭。奚以知其然也
且:
(1)连词,而且。且举世誉之而不加劝
(2)副词,还。彼且恶乎待哉
(3)副词,将要。且适南冥也
于:
(1)介词,对于。彼其于世/彼其于世
(2)介词,在。覆杯水于坳堂之上
其:
(1)用在选择问句中,或许……或说得过去,是……还是……其正色邪?其远而无所至极邪
(2)代词,它的。其名为鹏
(3)代词,它。其负大舟也无力(指水)
师说(韩愈)
古之学者必有师。师者,所以传道受业解惑也。人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾后,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
嗟乎!师道之不传也久矣!欲人之无惑也难矣!古之圣人,其出人也远矣,犹且从师而问焉;今之众人,其下圣人也亦远矣,而耻学于师。是故圣益圣,愚益愚。圣人之所以为圣,愚人之所以为愚,其皆出于此乎?爱其子,择师而教之;于其身也,则耻师焉,惑矣。彼童子之师,授之书而习其句读者,非吾所谓传其道解其惑者也。句读之不知,惑之不解,或师焉,或不焉,小学而大遗,吾未见其明也。巫医乐师百工之人,不耻相师。士大夫之族,曰师曰弟子云者,则群聚而笑之。问之,则曰:彼与彼年相若也,道相似也,位卑则足羞,官盛则近谀。呜呼!师道之不复,可知矣。巫医乐师百工之人,君子不齿,今其智乃反不能及,其可怪也欤!
圣人无常师。孔子师郯子、苌弘、师襄、老聃。郯子之徒,其贤不及孔子。孔子曰:三人行,则必有我师。是故弟子不必不如师,师不必贤于弟子,闻道有先后,术业有专攻,如是而已。
李氏子蟠,年十七,好古文,六艺经传皆通习之,不拘于时,学于余。余嘉其能行古道,作《师说》以贻之。
一词多义
(1)师
37、瞻前顾后:看看前面,又看看后面。形容做事之前考虑周密慎重。也形容顾虑太多,犹豫不决。
1、輮以为轮。 古义:把……做成 今义:认为
38、《诗经》三首
39、因
①因遗策(沿袭,动词)
②因利乘便(趁着,介词)
③因河为池(凭借,依据,介词)
40、之
①不爱珍器重宝肥饶之地(的,结构助词)
②……赵奢之伦制其兵(这,指示代词)
③商君佐之(他,指秦孝公,代词)
④聚之咸阳(代"天下之兵",代词)
——七年级上册数学知识点 30句菁华
1、2 有理数
2、3 有理数的加减法
3、同号两数相加,取相同的符号,并把绝对值相加。
4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
5、整数和分数统称为有理数(rational number)。
6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
9、两个负数,绝对值大的反而小。
10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
12、有理数中仍然有:乘积是1的两个数互为倒数。
13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
18、把等式一边的某项变号后移到另一边,叫做移项。
19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。
21、角∠(angle)也是一种基本的几何图形。
22、几何图形的投影问题
23、线段、射线、直线的表示方法
24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
27、不含字母的项叫做常数项。
28、单项式和多项式统称为整式。
29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。