六年级下册数学知识点归纳 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh

3、圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

4、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

5、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

6、两、三位数乘一位数的估算方法

7、求近似数:

8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

9、比的意义

10、比例的意义:表示两个比相等的式子叫做比例。

11、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

12、判断这两个量的比值是否一定,比值一定就成正比例关系;

13、带分数的倒数。先把分数化为假分数,然后将分子分母调换位置,即为该数的倒数。

14、负数:

15、0既不是正数,也不是负数,它是正、负数的分界限

16、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

17、圆柱的切割:

18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

19、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

20、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

21、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

22、33……、

23、看图答题

24、读法:在所读数的前面加上“负”

25、摄氏度

26、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。

27、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h

28、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。

29、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。

30、统计。

31、两条*行线之间的距离处处相等。

32、画高:

33、税率

34、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?

35、自然数从1到n,共用了942个数字,n是几?

36、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?

37、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

38、折线统计图:

39、温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。

40、多位数乘法法则


六年级下册数学知识点归纳 40句菁华扩展阅读


六年级下册数学知识点归纳 40句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

2、0的绝对值是其本身。

3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

4、除0外,任何数的的0次方等于1。

5、已知单位“1”用乘法计算

6、积与因数的大小关系

7、被除数与商的大小关系

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、图上距离:实际距离=比例尺;

11、图上距离=实际距离×比例尺;

12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、圆内最长的线段是直径。(__)

15、几个直径和为n的圆的周长=直径为n的圆的周长

16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

18、长方形里最大的圆。两者联系:宽=直径

19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

21、生活中的百分率:

22、直接求一个数是另一个数的百分之几一个数÷另一个数

23、已知比一个数多百分之几的数是多少,求这个数

24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

32、小数与百分数互化的规则:

33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

34、分数应用题基本数量关系(把分数看成比)

35、画线段图:

36、如果两个数是互质数,它们的公因数就是1。

37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

38、因为零不能作除数,所以分数的分母不能为零。

39、乘法分配律:

40、减法的性质:

41、圆的面积=圆周率×半径×半径

42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

46、根据比的基本性质,可以把比化成最简单的整数比。

47、化简比:

48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

50、使学生能在方格纸上用数对确定位置;

51、百分数的意义,求一个数是另一个数的百分之几的应用题;

52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的联系:

57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO


六年级下册数学知识点归纳 40句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


六年级下册数学知识点归纳 40句菁华(扩展3)

——六年级上册数学知识点总结 40句菁华

1、圆的定义:圆是由曲线围成的一种*面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

7、圆周率实验:

8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

10、取近似数的方法:

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

13、比例的基本性质是在比例里两内项积等于两外项积。

14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

18、分子分母是互质数的分数叫做最简分数。

19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

21、整数除法计算法则:

22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

26、小数的倒数:

27、各类地形中,什么地形面积?什么最小?

28、这个月哪项出最多?支出了多少元?

29、小数点位置的移动引起小数大小的变化

30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

31、减法的性质:

32、整数乘法计算法则:

33、小数乘法法则:

34、同分母分数加减法计算方法:

35、异分母分数加减法计算方法:

36、小数除法的意义

37、、长方形

38、、长方体

39、三角形

40、圆形


六年级下册数学知识点归纳 40句菁华(扩展4)

——中考数学知识点 50句菁华

1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

2、直角坐标系中,点A(3,0)在轴上。

3、直角坐标系中,点A(-2,3)在第四象限。

4、直角坐标系中,点A(-2,1)在第二象限。

5、数据1,2,3,4,5的中位数是3.

6、cs30°=。

7、sin260°+cs260°=1.

8、tan45°=1.

9、任意一个三角形一定有一个外接圆。

10、同圆或等圆的半径相等。

11、经过圆心*分弦的直径垂直于弦。

12、非负数:正实数与零的统称。(表为:x≥0)

13、相反数:①定义及表示法

14、奇数、偶数、质数、合数(正整数-自然数)

15、单项式与多项式

16、系数与指数

17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

19、科学记数法:(1≤a<10,n是整数=

20、个体:总体中每一个考察对象。

21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。

22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

24、一次函数

25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

27、圆的定义(两种)

28、正多边形及计算

29、圆柱、圆锥的侧面展开图及相关计算

30、作法与图形:通过如下3个步骤

31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

32、抛物线是轴对称图形。对称轴为直线

33、一次项系数b和二次项系数a共同决定对称轴的位置。

34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

35、用待定系数法求二次函数的解析式

36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

37、见直径往往作直径上的'圆周角

38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

40、(P11)小数四则运算顺序跟整数是一样的。

41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。

42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

43、方程的解是一个数;

44、长方形框架拉成*行四边形,周长不变,面积变小。

45、5 4 0 0 1

46、重心是三角形内到三边距离之积最大的点。

47、sin260+ cos260= 1.

48、tan45= 1.

49、cos60+ sin30= 1.

50、直角三角形两个锐角互余。


六年级下册数学知识点归纳 40句菁华(扩展5)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


六年级下册数学知识点归纳 40句菁华(扩展6)

——高考数学知识点总结 40句菁华

1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

6、.数量积与两个实数乘积的区别:

7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

11、两条异面直线所成的角的范围:0°<α≤90°< p="">

12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。

16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。

21、注意放回抽样,不放回抽样;

22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

25、列举法:{a,b,c……}

26、“包含”关系—子集

27、“相等”关系:A=B (5≥5,且5≤5,则5=5)

28、不含任何元素的集合叫做空集,记为

29、方程k=f(x)有解 k∈D(D为f(x)的值域);

30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

36、集合元素具有

37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;


六年级下册数学知识点归纳 40句菁华(扩展7)

——六年级语文下册知识点 30句菁华

1、形近字、形声字和多义字;

2、练习形式:

3、能够理解多义词在特定语言环境中的含义。

4、表示"注意力高度集中"的成语:聚精会神全神贯注专心致志 目不转睛.

5、来自寓言故事的成语:自相矛盾 坐井观天 守株待兔 刻舟求剑

6、句子的概念与类型

7、修改病句

8、积累并运用名言警句、歇后语、对联、谚语等

9、、关于句子的概念与类型:

10、分辨实写与联想的语句。了解联想与比喻的异同点。

11、概括主要内容和中心思想。

12、体会文章详略的方法及作用。

13、作文。

14、树的生长"不确定"指老天下,种树人浇水没规律。人生活的"不确定"指生活中不可预知的坎坷、曲折、磨难。桃花心木在不确定中寻找水源、拼命扎根,就能长成百年大树,显示出勃勃生机。人在不确定中生活,经历风雨和磨难就能成为意志坚强有所作为的人。树似人,人如树,这篇文章是借物喻人的表达方法。

15、作者是怎么具体描述日子来去匆匆的?仿照课文中的写法,再写几句。

16、《顶碗少年》介绍了一个表演杂技的顶碗少年,屡败屡战,最后终于获得了成功,从中感悟到了( )的道理;

17、《手指》一课的作者是我国著名的画家、作家 ( ),通过饶有趣味地描述五个手指各自的长处短处,告诉我们在生活中( ) 的道理。

18、《各具特色的民居》中,先介绍了( )族民居,它的特点是( ),作用是( );再介绍了( )族竹楼,它的特点是 ( ),作用是有利于( ) 。

19、《灯光》中的主人公( )为了实现( ) 的理想,在部队进攻受阻的千钧一发之际,毅然点燃了手中的书本,照亮部队前进的道路。

20、《十六年前的回忆》通过对*的回忆,是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形式的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了*的镇定、沉着;被害后写了全家的无比悲痛。

21、背诵全文。

22、《养花》:本文作者通过写自己的养花经历,切身体会到养花的乐趣,表达了对美好生活的热爱之情。

23、《索桥的故事》:本文通过讲述都江堰上“安澜桥”的故事,抒发了对民间百姓善良、淳朴的爱心的赞美之情,表达了对造福百姓的人的敬意。

24、《野草》:本文通过写植物种子神奇的力量,赞颂了野草顽强的生命力,比喻人们要有顽强的意志,鼓励人们克服阻力,奋发向上、勇于斗争。

25、《矛与盾》:本文是一篇寓言故事,讲述了一个人同时夸耀自己所卖的矛和盾,因为互相抵触而不能自圆其说的故事,告诉人们说话办事要实事求是,不要言过其实,自相矛盾。

26、《一个这样的老师》:本文记叙了怀特森老师利用“故弄玄虚”法教给学生“新怀疑主义”方法的故事,表现了他别具一格的教学方式对我的深远影响和对老师的敬佩之情。

27、《可爱的*》:本文通过对伟大祖国壮丽河山的描述和对侵略者的鞭挞,表达了一个*人的赤子情怀和远大抱负。

28、联系上下文,说说下面句子的意思。

29、《匆匆》的作者是朱自清,他的作品还有《绿》、《背影》。的特点:一是结构精巧,层次清楚,转承自然,首尾呼应;二是文字清秀隽永,纯朴简练;三是情景交融,无论是写燕子、杨柳、桃花,还是写太阳,都与"我们的日子为什么一去不复返呢"的感叹融为一体,处处流露出作者对时光流逝感到无奈和惋惜。

30、用关联词造句:

相关词条