六年级下册数学知识点归纳 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh

3、圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

4、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

5、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

6、两、三位数乘一位数的估算方法

7、求近似数:

8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

9、比的意义

10、比例的意义:表示两个比相等的式子叫做比例。

11、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

12、判断这两个量的比值是否一定,比值一定就成正比例关系;

13、带分数的倒数。先把分数化为假分数,然后将分子分母调换位置,即为该数的倒数。

14、负数:

15、0既不是正数,也不是负数,它是正、负数的分界限

16、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

17、圆柱的切割:

18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

19、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

20、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

21、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

22、33……、

23、看图答题

24、读法:在所读数的前面加上“负”

25、摄氏度

26、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。

27、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h

28、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。

29、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。

30、统计。

31、两条*行线之间的距离处处相等。

32、画高:

33、税率

34、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?

35、自然数从1到n,共用了942个数字,n是几?

36、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?

37、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

38、折线统计图:

39、温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。

40、多位数乘法法则


六年级下册数学知识点归纳 40句菁华扩展阅读


六年级下册数学知识点归纳 40句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

2、0的绝对值是其本身。

3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

4、除0外,任何数的的0次方等于1。

5、已知单位“1”用乘法计算

6、积与因数的大小关系

7、被除数与商的大小关系

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、图上距离:实际距离=比例尺;

11、图上距离=实际距离×比例尺;

12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、圆内最长的线段是直径。(__)

15、几个直径和为n的圆的周长=直径为n的圆的周长

16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

18、长方形里最大的圆。两者联系:宽=直径

19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

21、生活中的百分率:

22、直接求一个数是另一个数的百分之几一个数÷另一个数

23、已知比一个数多百分之几的数是多少,求这个数

24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

32、小数与百分数互化的规则:

33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

34、分数应用题基本数量关系(把分数看成比)

35、画线段图:

36、如果两个数是互质数,它们的公因数就是1。

37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

38、因为零不能作除数,所以分数的分母不能为零。

39、乘法分配律:

40、减法的性质:

41、圆的面积=圆周率×半径×半径

42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

46、根据比的基本性质,可以把比化成最简单的整数比。

47、化简比:

48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

50、使学生能在方格纸上用数对确定位置;

51、百分数的意义,求一个数是另一个数的百分之几的应用题;

52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的联系:

57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO


六年级下册数学知识点归纳 40句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


六年级下册数学知识点归纳 40句菁华(扩展3)

——六年级上册数学知识点总结 40句菁华

1、圆的定义:圆是由曲线围成的一种*面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

7、圆周率实验:

8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

10、取近似数的方法:

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

13、比例的基本性质是在比例里两内项积等于两外项积。

14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

18、分子分母是互质数的分数叫做最简分数。

19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

21、整数除法计算法则:

22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

26、小数的倒数:

27、各类地形中,什么地形面积?什么最小?

28、这个月哪项出最多?支出了多少元?

29、小数点位置的移动引起小数大小的变化

30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

31、减法的性质:

32、整数乘法计算法则:

33、小数乘法法则:

34、同分母分数加减法计算方法:

35、异分母分数加减法计算方法:

36、小数除法的意义

37、、长方形

38、、长方体

39、三角形

40、圆形


六年级下册数学知识点归纳 40句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


六年级下册数学知识点归纳 40句菁华(扩展5)

——五年级上册数学知识点 50句菁华

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


六年级下册数学知识点归纳 40句菁华(扩展6)

——二年级下册数学知识点 40句菁华

1、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

2、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

4、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

5、当吹东南风时,红旗往()飘;

6、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

7、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

8、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

9、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

10、时针走一大格是1小时,走一圈是12小时;

11、数位顺序表里:从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。

12、用估算策略解决问题。

13、用统计图表来表示数据的情况。

14、根据统计图表可以做出一些判断。

15、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。

16、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

17、用乘法口诀求商时,想除数和几相乘的被除数。

18、用乘法和除法两步计算解决实际问题的方法:

19、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

20、除法的性质

21、完全商

22、三角形的内角和定理,及三角形外角定理。

23、学会用“正”字记录数据。

24、两边之和大于第三边,两边之差小于第三边。

25、认识整时方法:分针指着12,时针指着几就是几时。

26、教材分析:

27、引导学生积极参与知识的构建,营造民主、和谐、*等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

28、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

29、3/1分子分母同时乘以3,得到9/3,这也是整数3的一个分数形式。

30、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。

31、可以得知整数化分数,可以化无数个。

32、可以表示分界

33、鸽巢原理也叫抽屉原理。

34、存在任意长度的素数等差数列。(格林和陶哲轩,2004年)

35、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)

36、正方形的周长=边长×4:C=4a。

37、长方体的表面积=(长×宽+长×高+宽×高)×2。

38、正方体的表面积=棱长×棱长×6:S=6a×a。

39、205. 207. ( ). ( ). ( )

40、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。


六年级下册数学知识点归纳 40句菁华(扩展7)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


六年级下册数学知识点归纳 40句菁华(扩展8)

——高二数学知识点归纳 40句菁华

1、有穷数列与无穷数列:

2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

3、等比数列中,若m+n=p+q,则

4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。

6、向量的数量积:

7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

8、不等式证明的依据

9、不等式的证明方法

10、交集;

11、逻辑连结词;

12、反函数;

13、对数的运算性质;

14、等比数列及其通顶公式;

15、同角三角函数的基本关系式;

16、已知三角函数值求角;

17、斜三角形解法举例。

18、*面向量的坐标表示;

19、不等式的证明;

20、不等式的解法;

21、直线的倾斜角和斜率;

22、直线方程的点斜式和两点式;

23、直线方程:

24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

25、位置关系的证明(主要方法):注意立体几何证明的书写

26、常见函数的导数公式:①;②;③;

27、导数的应用:

28、四种命题:

29、逻辑联结词:

30、面积、体积最(大)问题

31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

34、三角形三角关系:A+B+C=180°;C=180°-(A+B);

35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

39、,,成等差数列

40、一元二次不等式解法:

相关词条