1、形近字、形声字和多义字;
2、练习形式:
3、能够理解多义词在特定语言环境中的含义。
4、表示"注意力高度集中"的成语:聚精会神全神贯注专心致志 目不转睛.
5、来自寓言故事的成语:自相矛盾 坐井观天 守株待兔 刻舟求剑
6、句子的概念与类型
7、修改病句
8、积累并运用名言警句、歇后语、对联、谚语等
9、、关于句子的概念与类型:
10、分辨实写与联想的语句。了解联想与比喻的异同点。
11、概括主要内容和中心思想。
12、体会文章详略的方法及作用。
13、作文。
14、树的生长"不确定"指老天下雨,种树人浇水没规律。人生活的"不确定"指生活中不可预知的坎坷、曲折、磨难。桃花心木在不确定中寻找水源、拼命扎根,就能长成百年大树,显示出勃勃生机。人在不确定中生活,经历风雨和磨难就能成为意志坚强有所作为的人。树似人,人如树,这篇文章是借物喻人的表达方法。
15、作者是怎么具体描述日子来去匆匆的?仿照课文中的写法,再写几句。
16、《顶碗少年》介绍了一个表演杂技的顶碗少年,屡败屡战,最后终于获得了成功,从中感悟到了( )的道理;
17、《手指》一课的作者是我国著名的画家、作家 ( ),通过饶有趣味地描述五个手指各自的长处短处,告诉我们在生活中( ) 的道理。
18、《各具特色的民居》中,先介绍了( )族民居,它的特点是( ),作用是( );再介绍了( )族竹楼,它的特点是 ( ),作用是有利于( ) 。
19、《灯光》中的主人公( )为了实现( ) 的理想,在部队进攻受阻的千钧一发之际,毅然点燃了手中的书本,照亮部队前进的道路。
20、《十六年前的回忆》通过对*的回忆,是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形式的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了*的镇定、沉着;被害后写了全家的无比悲痛。
21、背诵全文。
22、《养花》:本文作者通过写自己的养花经历,切身体会到养花的乐趣,表达了对美好生活的热爱之情。
23、《索桥的故事》:本文通过讲述都江堰上“安澜桥”的故事,抒发了对民间百姓善良、淳朴的爱心的赞美之情,表达了对造福百姓的人的敬意。
24、《野草》:本文通过写植物种子神奇的力量,赞颂了野草顽强的生命力,比喻人们要有顽强的意志,鼓励人们克服阻力,奋发向上、勇于斗争。
25、《矛与盾》:本文是一篇寓言故事,讲述了一个人同时夸耀自己所卖的矛和盾,因为互相抵触而不能自圆其说的故事,告诉人们说话办事要实事求是,不要言过其实,自相矛盾。
26、《一个这样的老师》:本文记叙了怀特森老师利用“故弄玄虚”法教给学生“新怀疑主义”方法的故事,表现了他别具一格的教学方式对我的深远影响和对老师的敬佩之情。
27、《可爱的*》:本文通过对伟大祖国壮丽河山的描述和对侵略者的鞭挞,表达了一个*人的赤子情怀和远大抱负。
28、联系上下文,说说下面句子的意思。
29、《匆匆》的作者是朱自清,他的作品还有《绿》、《背影》。的特点:一是结构精巧,层次清楚,转承自然,首尾呼应;二是文字清秀隽永,纯朴简练;三是情景交融,无论是写燕子、杨柳、桃花,还是写太阳,都与"我们的日子为什么一去不复返呢"的感叹融为一体,处处流露出作者对时光流逝感到无奈和惋惜。
30、用关联词造句:
——六年级上册数学知识点 50句菁华
1、异分母分数加减法计算方法:
2、小数除法法则:
3、连结梯形对角线中点的线段等于两底的一半。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分数乘整数的意义
6、分数乘分数的的计算方法
7、找单位“1”的方法
8、求一个数的几倍、几分之几是多少,用乘法计算。
9、20是25的几分之几? 20÷25=4/5
10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)
15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。
16、加法交换律:a+b=b+a
17、直接求一个数是另一个数的百分之几一个数÷另一个数
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
21、路程一定,速度比和时间比成反比。
22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。
23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。
25、分数应用题基本数量关系(把分数看成比)
26、被除数÷除数=被除数×除数的倒数。
27、自然数和0都是整数。
28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
32、小数点位置的移动引起小数大小的变化
33、被除数 相当于分子,除数相当于分母。
34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
35、、长方体
36、圆形
37、圆柱体
38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
39、分数除法应用题:
40、根据比的基本性质,可以把比化成最简单的整数比。
41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
42、理解并掌握分数除法的计算方法,会进行分数除法计算;
43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
45、百分数的意义,求一个数是另一个数的百分之几的应用题;
46、小数的倒数:
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、比和比例的意义:
49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
——六年级下册数学知识点归纳 40句菁华
1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh
3、圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)
4、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
5、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
6、两、三位数乘一位数的估算方法
7、求近似数:
8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
9、比的意义
10、比例的意义:表示两个比相等的式子叫做比例。
11、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
12、判断这两个量的比值是否一定,比值一定就成正比例关系;
13、带分数的倒数。先把分数化为假分数,然后将分子分母调换位置,即为该数的倒数。
14、负数:
15、0既不是正数,也不是负数,它是正、负数的分界限
16、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
17、圆柱的切割:
18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
19、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
20、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
21、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
22、33……、
23、看图答题
24、读法:在所读数的前面加上“负”
25、摄氏度
26、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。
27、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h
28、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。
29、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。
30、统计。
31、两条*行线之间的距离处处相等。
32、画高:
33、税率
34、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?
35、自然数从1到n,共用了942个数字,n是几?
36、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?
37、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
38、折线统计图:
39、温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。
40、多位数乘法法则
——六年级数学下册知识点 40句菁华
1、能借助数轴初步学会比较正数、0和负数之间的大小。
2、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
3、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8<-6。
4、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
8、把圆锥的侧面展开得到一个扇形。
9、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
11、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
12、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
13、通过“抽屉原理”的灵活应用感受数学的魅力。
14、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
15、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算*均数的实际问题。
16、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
17、(1)圆柱两个底面之间的距离叫做圆柱的高。
18、圆柱的底面是圆形,面不是椭圆。
19、一个圆柱占空间的大小,叫做这个圆柱的体积。
20、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h
21、圆锥是由一个底面和一个侧面两部分组成。
22、半圆能围成圆锥,但整圆不能围成圆锥。
23、圆柱体积是圆锥体积的3倍或者说圆锥体积是圆柱体积的1/3,必须以“圆柱和圆锥等底等高”为前提。
24、统计。
25、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。
26、只有一组对边*行的四边形叫梯形。
27、折扣:
28、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
29、以长方形的长为底面周长,宽为高;
30、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
31、圆锥的特征:
32、圆锥的相关计算公式:
33、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
34、求比值和化简比:
35、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
36、判断两种量成正比例还是成反比例的方法:
37、用比例解决问题:
38、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
39、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用
40、摸2个同色球计算方法。
——六年级数学上册知识点 60句菁华
1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
2、两个小数的比,向右移动小数点的位置。也是先化成整数比。
3、3 32
4、条形统计图:可以清楚的看出数据的多少
5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
10、被除数÷除数= 被除数/除数
11、因为零不能作除数,所以分数的分母不能为零。
12、乘法分配律:
13、整数减法计算法则:
14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
15、混合运算用梯等式计算,等号写在第一个数字的左下角。
16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
17、找单位“1”的方法
18、1的倒数是1,0没有倒数。
19、被除数与商的大小关系
20、20是25的几分之几? 20÷25=4/5
21、已知单位“1”用乘法,求单位“1”用除法;
22、工程问题
23、一个数乘分数的意义就是求一个数的几分之几是多少。
24、求一个数的几分之几是多少?(用乘法)
25、什么是速度?
26、求一个数的百分之几是多少。一个数(单位“1”)×百分率
27、已知一个数的百分之几是多少,求这个数。
28、常用统计图的优点:
29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
33、百分数应用:
34、圆的定义:
35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。
36、半径为1厘米的圆的周长是3.14厘米。(__)
37、这个月哪项出最多?支出了多少元?
38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
39、常见的百分率的计算方法:
40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)
43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
44、除数是整数的小数除法计算法则:
45、圆锥体
46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
47、化简比:化简之后结果还是一个比,不是一个数。
48、比和除法、分数的区别:
49、已知单位“1”的量用乘法。
50、画线段图:
51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
53、比和比例的意义:
54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
55、“数与形相结合”的思想
56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
57、圆的半径越长,这个圆就越大。(__)
58、画一个半径为1厘米的圆。
59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。
60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?
——七年级数学下册知识点总结 50句菁华
1、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
2、按定义分类:2.按性质符号分类:
3、有效数字:
4、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
5、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
11、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
12、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
13、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
14、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
15、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
16、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
17、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
18、垂直三要素:垂直关系,垂直记号,垂足
19、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
20、1.2
21、4*移
22、1.1有序数对
23、1.2*面直角坐标系
24、点、线、面、体
25、整数:正整数、0、负整数,统称整数。
26、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
27、单独的一个数字是单项式,它的系数是它本身。
28、多项式没有系数的概念,但有次数的概念。
29、整式不一定是多项式。
30、此法则也可以逆用,即:amn =(am)n=(an)m。
31、此法则也可以逆用,即:anbn=(ab)n。
32、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
33、系数相乘时,注意符号。
34、*方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
35、*方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
36、命题:判断一件事情的语句叫命题。
37、无理数
38、绝对值
39、实数与数轴上点的关系:
40、3三角形的稳定性
41、1三角形的内角
42、1多边形
43、*行公理:
44、三角形中的主要线段:
45、多边形的内角和:
46、提公因式法. 关键:找出公因式
47、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
48、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
49、不等式的解集在数轴上表示:
50、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
——六年级语文的复习计划 50句菁华
1、按照课本编排的顺序,逐组课文地进行复习。采用这样的方法进行复习,最重要的是要善于引导学生进行比较。不仅要明确编者选编这一组课文的意图,而且要找出每篇课文在表达上的特点。
2、注重全体,因材施教。
3、能正确认读课后《生字表(一)》中的200个生字,会写《生字表(二)》中的150个生字。
4、初步了解汉字谐音的特点、汉字的起源和演变,增进热爱祖国语言文字的情感。
5、学写简单的读书笔记,学写内容梗概。
6、及时与家长联系,让家长在家配合。加强监督、沟通。
7、能读准声母、韵母、声调和整体认读音节,并正确书写;能具体区分声母、韵母;
8、认识隔音符号、声调符号;并掌握“ü”的拼写规则;
9、复习“一”、“不”的变调,复习“啊”的变声;
10、指导学生在*时的阅读中,多注意词语的搭配,以形成良好的预感,掌握规范的语言;
11、词语按一定顺序排列可作一指导。
12、懂得句子是表达一个完整的意思的,表达力求完整;
13、课内要求背诵的段落必须熟练掌握,重点段落要会默写;课内重点片断要在每个知识点上多下点工夫;
14、在理解文章的过程中,引导学生体会省略号、破折号、引号的不同用法,体会顿号与逗号、分号与句号的不同用法;注意书名号的使用方法;特别强调“提示语”中标点的使用;
15、复习时,参考《试题精粹》中“口语交际”的内容,老师也可以根据自己班级的实际情况进行补充。
16、掌握常见的俗语、谚语、歇后语,并能适当运用;
17、初步了解查找资料,运用资料的基本方法。
18、以简单的纪实作文和想象作文作为复习的重点;
19、进一步提高口语交际水*,在阅读复习中相机进行实践。
20、基础知识:知识点、解题方法归纳与《复习册》练习同步
21、习作:不同题材习作方法与练笔同步
22、第一阶段
23、课文中生词和标出的词语会写。
24、以《配》、教研室试卷和《伴》试卷上的篇章为主。
25、教师要再次研究教材,把握教材的重难点,制定详细的复习计划,精心准备复习教案,复习作业要精而准。
26、加大测评的力度,多考多评。
27、对于优等生,教师要给予拔高要求,培养优生,提高*均分。
28、教师要根据学生的掌握的情况随时调整自己的复习内容,要分析好学生的学情。
29、教师要多与其他教师联系,取长补短,共同进步。
30、突出方法性
31、注意趣味性。
32、大力鼓励和奖励学生,对优良学生,鼓励致力于发展性思维训练,要掌握学习策略和学习过程。鼓励优秀学生积极创造,增强思维的灵活性、敏捷性,做复习中的小老师。
33、主要题型
34、应用文选材原则:内容真实、注重实用
35、记实作文表达原则:具体自然、追求个性
36、能互换写出大写和小写字母。
37、能在语言环境中找近、反义词,会辨别词的感情色彩和词的意思。
38、句子类型:认识常用句式,积累句子,能仿写优美的句子。
39、会扩句,会用修改符号修改病句。
40、能背诵(11—12)册《积累运用》中常用的诗句、谚语、歇后语和格言。
41、能根据提供要求或情景,运用课本中“语言积累”和课外阅读积累的常用名言、谚语、歇后语。
42、能归纳段意,主要内容,体会文章所表达的思想感情。
43、12册教材,练习册、检测题(12册为重点)
44、与各科教师协调工作。
45、以阅读为训练重点,培养学生认真阅读,认真分析的能力,教给学生学习的方法,培养学生的学习习惯。(把握每个单元的阅读重点。)(16周)
46、习作以简单的纪实作文和想象作文为复习重点,常见应用文是重点也是难点,各班根据自己的实际情况进行复习,教师认真指导习作方法,培养学生良好的习作习惯。(17周)
47、拼音:
48、写词:
49、标点符号。
50、能背诵并默写课文精彩片段。
——七年级下册数学知识点总结 40句菁华
1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、两条直线被第三条直线所截:
13、垂直公理:过一点有且只有一条直线与已知直线垂直。
14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
15、*行线的性质:
16、*面上不相重合的两条直线之间的位置关系为_______或________
17、倒数
18、大于0的数叫做正数(positive number)。
19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
20、有理数减法法则
21、有理数中仍然有:乘积是1的两个数互为倒数。
22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
25、根据有理数的乘法法则可以得出
26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
30、包围着体的是面(surface),面有*的面和曲的面两种。
31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
32、角∠(angle)也是一种基本的几何图形。
33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
34、等角的补角相等,等角的余角相等。
35、相反数的几何意义
36、相反数的表示方法
37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
40、整式加减的一般步骤: