二年级上册数学知识点 50句菁华

首页 / 句子 / | 2022-12-02 00:00:00 数学

1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。

2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。

3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

7、万以内数的读法和写法与1000以内的数读法和写法相同。

8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。

9、“有余数除法”的复习。

10、“方向和路线”的复习。

11、“万以内的加、减法”的复习。

12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。

13、实数

14、轴对称与坐标变化

15、一次函数与正比例函数

16、用二元一次方程组确定一次函数表达式

17、从统计图分析数据的集中趋势

18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

22、差=被减数—减数

23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

24、56页例5

25、探索并掌握两位数减两位数不退位)的计算方法。

26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。

27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。

28、渗透统计的思想和方法。

29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

31、厘米和米

32、笔算减法

33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。

34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

35、观察物体时,要抓住物体的特征来判断。

36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。

40、同分母分数的加减法。(分母不变,分子相加或相减。)

41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点

42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。

43、三角形的面积=底×高÷2:S=ah÷2。

44、长方体的体积=长×宽×高:V=abh。

45、圆柱的侧面积=底面圆的周长×高:S=ch。

46、常用的长度单位:米、厘米。

47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

48、差=被减数-减数

49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

50、乘法算式的写法和读法


二年级上册数学知识点 50句菁华扩展阅读


二年级上册数学知识点 50句菁华(扩展1)

——五年级上册数学知识点 60句菁华

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


二年级上册数学知识点 50句菁华(扩展2)

——五年级上册数学知识点 50句菁华

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


二年级上册数学知识点 50句菁华(扩展3)

——二年级下册数学知识点 40句菁华

1、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

2、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

4、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

5、当吹东南风时,红旗往()飘;

6、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

7、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

8、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

9、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

10、时针走一大格是1小时,走一圈是12小时;

11、数位顺序表里:从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。

12、用估算策略解决问题。

13、用统计图表来表示数据的情况。

14、根据统计图表可以做出一些判断。

15、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。

16、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

17、用乘法口诀求商时,想除数和几相乘的被除数。

18、用乘法和除法两步计算解决实际问题的方法:

19、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

20、除法的性质

21、完全商

22、三角形的内角和定理,及三角形外角定理。

23、学会用“正”字记录数据。

24、两边之和大于第三边,两边之差小于第三边。

25、认识整时方法:分针指着12,时针指着几就是几时。

26、教材分析:

27、引导学生积极参与知识的构建,营造民主、和谐、*等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

28、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

29、3/1分子分母同时乘以3,得到9/3,这也是整数3的一个分数形式。

30、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。

31、可以得知整数化分数,可以化无数个。

32、可以表示分界

33、鸽巢原理也叫抽屉原理。

34、存在任意长度的素数等差数列。(格林和陶哲轩,2004年)

35、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)

36、正方形的周长=边长×4:C=4a。

37、长方体的表面积=(长×宽+长×高+宽×高)×2。

38、正方体的表面积=棱长×棱长×6:S=6a×a。

39、205. 207. ( ). ( ). ( )

40、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。


二年级上册数学知识点 50句菁华(扩展4)

——中考数学知识点 50句菁华

1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

2、直角坐标系中,点A(3,0)在轴上。

3、直角坐标系中,点A(-2,3)在第四象限。

4、直角坐标系中,点A(-2,1)在第二象限。

5、数据1,2,3,4,5的中位数是3.

6、cs30°=。

7、sin260°+cs260°=1.

8、tan45°=1.

9、任意一个三角形一定有一个外接圆。

10、同圆或等圆的半径相等。

11、经过圆心*分弦的直径垂直于弦。

12、非负数:正实数与零的统称。(表为:x≥0)

13、相反数:①定义及表示法

14、奇数、偶数、质数、合数(正整数-自然数)

15、单项式与多项式

16、系数与指数

17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

19、科学记数法:(1≤a<10,n是整数=

20、个体:总体中每一个考察对象。

21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。

22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

24、一次函数

25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

27、圆的定义(两种)

28、正多边形及计算

29、圆柱、圆锥的侧面展开图及相关计算

30、作法与图形:通过如下3个步骤

31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

32、抛物线是轴对称图形。对称轴为直线

33、一次项系数b和二次项系数a共同决定对称轴的位置。

34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

35、用待定系数法求二次函数的解析式

36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

37、见直径往往作直径上的'圆周角

38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

40、(P11)小数四则运算顺序跟整数是一样的。

41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。

42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

43、方程的解是一个数;

44、长方形框架拉成*行四边形,周长不变,面积变小。

45、5 4 0 0 1

46、重心是三角形内到三边距离之积最大的点。

47、sin260+ cos260= 1.

48、tan45= 1.

49、cos60+ sin30= 1.

50、直角三角形两个锐角互余。


二年级上册数学知识点 50句菁华(扩展5)

——小学数学知识点 50句菁华

1、加减混合运算:

2、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

3、从高位起,按照顺序写;

4、哪一位上乘得的积满几十就向前进几。

5、万级的数要按个级的读法来读,再在后面加上一个“万”字;

6、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

7、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

8、检验、写出答案。

9、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

10、公式(每两个相邻的时间单位之间的进率是60):

11、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

12、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

13、在计算长度时,只有相同的长度单位才能相加减。

14、公式:

15、多位数乘一位数(进位)的笔算方法:

16、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

17、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

18、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

19、先看图,再填空★★★ ★★★ ★★★ ★★★

20、数一数

21、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

22、物体的表面或封闭图形的大小,就是他们的面积。

23、边长1分米的正方形面积是1*方分米。

24、边长1千米(1000米)的正方形面积是1*方千米。

25、长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽

26、学会用“正”字记录数据。

27、解决有关*均分问题的方法:

28、汽车在笔直的公路上行驶,车身的运动是( )现象

29、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

30、小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

31、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

32、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

33、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

34、10个一千是一万。

35、(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

36、已知一个数的百分之几是多少,求这个数。

37、利率

38、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

39、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

40、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

41、加数+加数=和和-一个加数=另一个加数

42、学会用加法解决简单的实际问题。

43、搭积木(十几加(减)几的加减法)知识点:(1)用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

44、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

45、连加:多个数字连续相加叫做连加。例如:28+24+23=85

46、连减:多个数字连续相减叫做连减。例如:85-40-26=19

47、加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

48、圆的周长总是直径的三倍多一些。

49、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

50、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。


二年级上册数学知识点 50句菁华(扩展6)

——数学七年级知识点 50句菁华

1、具有相反意义的量

2、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

3、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

4、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。

5、包围着体的是面,面有*的面和曲的面两种。

6、把一个周角360等分,每一份就是1度的角,记作1°;

7、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

8、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

9、垂直三要素:垂直关系,垂直记号,垂足

10、垂直公理:过一点有且只有一条直线与已知直线垂直。

11、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

12、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

13、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

14、同级运算,从左到右进行。

15、注重预习培养自学能力

16、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

17、*行线:在同一*面内,不相交的两条直线叫做*行线。

18、*移:在*面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做*移*移变换,简称*移。

19、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).

20、验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

21、两个负数,绝对值大的反而小.

22、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

23、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

24、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.

25、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

26、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

27、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.

28、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

29、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

30、钝角三角形有两条高在外部。

31、全等图形的大小(面积、周长)、形状都相同。

32、三个角对应相等的两个三角形不一定全等。

33、两角及一边对应相等的两个三角形全等。

34、两边及一角对应相等的两个三角形不一定全等。

35、全等图形

36、两个能够重合的图形称为全等图形。

37、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

38、数学公式一定要记熟,并且还要会推导,能举一反三。

39、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

40、___________________________________叫对顶角,对顶角___________.

41、相反数的表示方法

42、多重符号的化简

43、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

44、有理数的乘法运算律

45、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

46、保持好心态

47、负数:比0小的数叫负数。

48、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

49、有理数比大小:

50、科学记数法:


二年级上册数学知识点 50句菁华(扩展7)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单独的一个数字是单项式,它的系数是它本身。

4、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

5、单项式的系数包括它前面的符号。

6、单项式的系数是带分数时,应化成假分数。

7、单项式的系数是1或―1时,通常省略数字“1”。

8、几个单项式的和叫做多项式。

9、一个多项式有几项,就叫做几项式。

10、多项式中次数最高的项的次数,叫做这个多项式的次数。

11、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

12、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

13、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

14、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

15、此法则也可以逆用,即:amn =(am)n=(an)m。

16、此法则也可以逆用,即:anbn=(ab)n。

17、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

18、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

19、相同字母的幂相乘时,底数不变,指数相加。

20、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

21、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

22、单项式与单项式、多项式相乘的.法则。

23、三角形

24、常见的轴对称图形有:

25、(1)等腰三角形:对称轴,性质

26、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

27、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

28、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

29、成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。

30、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。

31、垂直三要素:垂直关系,垂直记号,垂足

32、垂直公理:过一点有且只有一条直线与已知直线垂直。

33、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

34、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

35、命题:判断一件事情的语句叫命题。

36、无理数

37、相反数

38、实数与数轴上点的关系:

39、算术*方根

40、注重预习培养自学能力


二年级上册数学知识点 50句菁华(扩展8)

——三年级上册数学的知识点归纳 40句菁华

1、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

2、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

3、计算一段时间,可以用结束的时刻减去开始的时刻。

4、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

5、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

6、两个三位数相加的和:可能是三位数,也有可能是四位数。

7、减法公式:

8、在乘法里,乘数也叫做因数。

9、三位数乘一位数:积有可能是三位数,也有可能是四位数。

10、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。

11、长方形的周长=(长+宽)×2 正方形的周长=边长×4

12、在身份证编码中,第十七位代码表示性别:单数男性,双数女性。

13、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

14、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

15、常用的时间单位:时、分、秒、年、月、日、世纪等。

16、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

17、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

18、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

19、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

20、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、四边形的特点:有四条直的边,有四个角。

23、正方形的特点:有4个直角,4条边相等。

24、长方形和正方形是特殊的*行四边形。

25、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

26、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

27、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

28、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

29、分数大小比较的应用题:工作效率大的快,工作时间小的快。

30、求一个数是(占)另一个数的几分之几,用除法列算式计算。

31、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

32、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

33、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

34、只要是*均分就用(除法)计算。

35、多位数除以一位数(判断商是几位数):

36、记忆大小月的方法

37、普通记时法与24时记时法的转换。

38、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

39、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

40、闰年:2月有29天的月份是*年,*年有365天。

相关词条