五年级上册数学知识点 60句菁华

首页 / 句子 / | 2022-12-02 00:00:00 数学

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


五年级上册数学知识点 60句菁华扩展阅读


五年级上册数学知识点 60句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

2、0的绝对值是其本身。

3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

4、除0外,任何数的的0次方等于1。

5、已知单位“1”用乘法计算

6、积与因数的大小关系

7、被除数与商的大小关系

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、图上距离:实际距离=比例尺;

11、图上距离=实际距离×比例尺;

12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、圆内最长的线段是直径。(__)

15、几个直径和为n的圆的周长=直径为n的圆的周长

16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

18、长方形里最大的圆。两者联系:宽=直径

19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

21、生活中的百分率:

22、直接求一个数是另一个数的百分之几一个数÷另一个数

23、已知比一个数多百分之几的数是多少,求这个数

24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

32、小数与百分数互化的规则:

33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

34、分数应用题基本数量关系(把分数看成比)

35、画线段图:

36、如果两个数是互质数,它们的公因数就是1。

37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

38、因为零不能作除数,所以分数的分母不能为零。

39、乘法分配律:

40、减法的性质:

41、圆的面积=圆周率×半径×半径

42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

46、根据比的基本性质,可以把比化成最简单的整数比。

47、化简比:

48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

50、使学生能在方格纸上用数对确定位置;

51、百分数的意义,求一个数是另一个数的百分之几的应用题;

52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的联系:

57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO


五年级上册数学知识点 60句菁华(扩展2)

——五年级上册数学知识点 50句菁华

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


五年级上册数学知识点 60句菁华(扩展3)

——七年级上册数学知识点 30句菁华

1、2 有理数

2、3 有理数的加减法

3、同号两数相加,取相同的符号,并把绝对值相加。

4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

5、整数和分数统称为有理数(rational number)。

6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

9、两个负数,绝对值大的反而小。

10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

12、有理数中仍然有:乘积是1的两个数互为倒数。

13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

18、把等式一边的某项变号后移到另一边,叫做移项。

19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

21、角∠(angle)也是一种基本的几何图形。

22、几何图形的投影问题

23、线段、射线、直线的表示方法

24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

27、不含字母的项叫做常数项。

28、单项式和多项式统称为整式。

29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。


五年级上册数学知识点 60句菁华(扩展4)

——数学七年级知识点 60句菁华

1、具有相反意义的量

2、三角形内角和定理:三角形三个内角的和等于180°

3、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

4、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

5、负数:小于0的数。

6、角∠也是一种基本的几何图形。

7、0即不是正数也不是负数。

8、如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

9、整数:正整数、0、负整数,统称整数。

10、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

11、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

12、垂直公理:过一点有且只有一条直线与已知直线垂直。

13、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

14、同底数幂相乘,底不变,指数相加。

15、先乘方,再乘除,最后加减。

16、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

17、注重预习培养自学能力

18、对顶角和邻补角的关系

19、项:组成多项式的每个单项式叫做多项式的项。

20、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

21、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

22、假命题:条件和结果相矛盾的命题是假命题。

23、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

24、在正数前面加上负号“-”的数叫做负数(negativenumber).

25、有理数减法法则

26、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).

28、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

29、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

30、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。

31、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.

32、不可能事件发生的概率为0,记作P(不可能事件)=0;

33、不确定事件发生的概率在0—1之间,记作0

34、判断三条线段能否组成三角形。

35、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

36、注意等底等高知识的考试

37、列代数式的几个注意事项

38、三条边分别对应相等的两个三角形全等。

39、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。

40、两角及一边对应相等的两个三角形全等。

41、两边及它们的夹角对应相等的两个三角形全等。

42、两条直角边对应相等的两个直角三角形全等。

43、一条斜边和一直角边对应相等的两个三角形全等。

44、一角和一边对应相等的两个直角三角形不一定全等。

45、全等图形

46、全等三角形

47、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

48、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

49、数学公式一定要记熟,并且还要会推导,能举一反三。

50、*移:

51、两点确定一条直线,两点之间线段最短._______________叫两点间距离.

52、函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量、

53、正数和负数的概念

54、绝对值的性质

55、绝对值的化简

56、保持好心态

57、正数:比0大的数叫正数。

58、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

59、有理数乘法法则:

60、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。


五年级上册数学知识点 60句菁华(扩展5)

——八年级上册物理知识点 50句菁华

1、观察和实验是获取物理知识的重要来源。

2、振动停止,发生停止;但声音并没立即消失(因为原来发出的声音仍在继续传播)。

3、声音以波(声波)的形式传播。

4、回声的利用:测量距离(车到山,海深,冰川到船的距离)。

5、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表示物体振动的快慢,单位是赫兹,振动物体越大音调越低;)。

6、响度:声音的强弱叫响度;物体振幅越大,响度]越强;听者距发声者越远响度越弱。

7、噪声的等级:表示声音强弱的单位是分贝。符号dB,超过90dB会损害健康;0dB指人耳刚好能听见的声音。

8、控制噪声:

9、传递信息(医生查病时的"闻",打B超,敲铁轨听声音等等)。

10、声音可以传递能量(飞机场帮边的玻璃被震碎,雪山中不能高声说话,一音叉振动,未接触的音叉振动发生)。

11、机械运动:一个物体相对另一个物*置改变(关键抓住五个字“位置的变化”)

12、音色:由物体本身决定。人们根据音色能够辨别乐器或区分人。

13、物理学角度看,噪声是指发声体做无规则的杂乱无章的振动发出的声音;环境保护的角度噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。

14、反射定律:三线同面,法线居中,两角相等,光路可逆.即:反射光线与入射光线、法线在同一*面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。

15、面镜:

16、光的折射定律:三线同面,法线居中,空气中角大,光路可逆

17、实验:实验时点燃蜡烛,使烛焰、凸透镜、光屏的中心大致在同一高度,目的是:使烛焰的像成在光屏中央。

18、望远镜:有一种望远镜也是由两组凸透镜组成的。靠近眼睛的凸透镜叫做目镜,靠近被观察物体的凸透镜叫做物镜。我们能不能看清一个物体,它对我们的眼睛所成“视角”的大小十分重要。望远镜的物镜所成的像虽然比原来的物体小,但它离我们的眼睛很近,再加上目镜的放大作用,视角就可以变得很大

19、质量的理解:固体的质量不随物体的形态、状态、位置、温度 而改变,所以质量是物体本身的一种属性。

20、透镜的主光轴:通过两个球面球心的直线。

21、实像是实际光线会聚成的可以形成在光屏上,虚像不是光线形成的,不能形成在光屏上。

22、速度:路程与时间之比叫做速度,速度是表示物体运动快慢的物理量。

23、计算公式:v=s t

24、速度:

25、回声:

26、耳聋

27、骨传导及实例:

28、熔化:

29、凝固条件:

30、沸腾和蒸发的异同

31、光线:

32、判断日食:

33、光年:

34、物体的颜色:

35、投影仪成像特点:倒立放大的实像。

36、远视眼矫正:佩戴凸透镜。

37、显微镜成像原理(虚像):

38、光遇到水面,玻璃以及其他许多物体的表面都会发生反射。光的反射遵守反射规律。

39、光从空气斜射入水或者其它介质中时,折射光线向法线方向偏折。光的折射定律:三线共面,两线分侧,两角不等(空气中角大些)折射现象:钢笔错位、池水变浅、水中叉鱼、海市蜃楼等

40、一束白光(太阳光)通过三棱镜分解成为红橙黄绿蓝靛紫七色光的现象叫做光的色散。说明白光不是单色光,而是各种单色光组成的复合光。彩虹是太阳光被水滴色散而成。

41、紫外线位于紫光以外,太阳光是天然紫外线的重要来源。臭氧可以吸收紫外线,避免过量的紫外线对人体伤害。紫外线作用:

42、近视眼应该带凹透镜,远视眼应该带凸透镜。眼镜的度数=100×焦度焦度=1/f

43、温度是物体的冷热程度。

44、温度计原理:液体的热胀冷缩的性质制成的。使用前注意:

45、物质从固态变成气态叫做升华,升华吸热,从气态变成固态叫做凝华,凝华放热。

46、电荷的多少叫做电荷量。单位:库仑(c)元电荷是最小的电荷e=1.6×10—19原子有带正电的原子核和带负电的电子组成。通常情况下原子核带的正电荷和核外电子总共带的负电荷数量相等,不显电性,但是得到电子就显负电,失去电子就显正电。

47、光从一种介质斜射入另一种介质时,传播方向发生偏折。

48、光在同种介质中传播,当介质不均匀时,光的传播方向亦会发生变化。

49、折射角随入射角的增大而增大

50、图表记忆法:可采用小卡片、转动纸板、列表格等方式,将知识内容分类归纳小结编成图表记忆。


五年级上册数学知识点 60句菁华(扩展6)

——三年级上册数学的知识点归纳 40句菁华

1、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

2、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

3、计算一段时间,可以用结束的时刻减去开始的时刻。

4、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

5、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

6、两个三位数相加的和:可能是三位数,也有可能是四位数。

7、减法公式:

8、在乘法里,乘数也叫做因数。

9、三位数乘一位数:积有可能是三位数,也有可能是四位数。

10、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。

11、长方形的周长=(长+宽)×2 正方形的周长=边长×4

12、在身份证编码中,第十七位代码表示性别:单数男性,双数女性。

13、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

14、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

15、常用的时间单位:时、分、秒、年、月、日、世纪等。

16、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

17、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

18、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

19、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

20、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、四边形的特点:有四条直的边,有四个角。

23、正方形的特点:有4个直角,4条边相等。

24、长方形和正方形是特殊的*行四边形。

25、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

26、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

27、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

28、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

29、分数大小比较的应用题:工作效率大的快,工作时间小的快。

30、求一个数是(占)另一个数的几分之几,用除法列算式计算。

31、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

32、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

33、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

34、只要是*均分就用(除法)计算。

35、多位数除以一位数(判断商是几位数):

36、记忆大小月的方法

37、普通记时法与24时记时法的转换。

38、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

39、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

40、闰年:2月有29天的月份是*年,*年有365天。


五年级上册数学知识点 60句菁华(扩展7)

——数学五年级知识点 40句菁华

1、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3

3、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。

4、分数的意义两种解释:①把单位“1”*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

5、除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

6、多边形面积的计算。

7、205≈2.21 (保留两位小数)

8、先算乘除,再算加减

9、有括号的先算括号内

10、真分数和假分数、带分数

11、带分数:带分数由整数和真分数组成的分数。带分数>1.

12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

13、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。

14、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )

15、含有未知数的算式叫做方程。( )

16、5x表示5个x相乘。( )

17、一个三角形,底a缩小5倍,*扩大5倍,面积就缩小10倍。( )

18、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,7天可以收割多少公顷?60.4公顷大豆需要多少天才能收完

19、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?

20、乘法交换律:axb=bxa

21、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

22、【体积单位换算】

23、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

24、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

25、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。

26、常用时间单位:时、分、秒。

27、计算小数乘法末尾对齐,按整数乘法法则进行计算。

28、把因数的位置交换相乘

29、用计算器来验算

30、长方形的周长=(长+宽)×2 C=(a+b)×2

31、长方形的面积=长×宽S=ab

32、圆的面积=圆周率×半径×半径

33、镜子内外的左右方向是相反的。

34、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。

35、运动场的跑道,通常1圈是400米,2圈半是1000米。

36、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

37、常用长度单位:米、分米、厘米、毫米、千米。

38、公式:

39、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

40、因数×因数=积积÷一个因数=另一个因数


五年级上册数学知识点 60句菁华(扩展8)

——五年级数学知识点 30句菁华

1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

2、裂项公式(用于特殊的简便计算)

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

4、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

5、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

6、循环小数问题:

7、732732写作10.732。

8、小数除以整数:

9、当被除数与除数同时扩大或缩小相同的倍数时,商不变。

10、当被除数(不为0)除以一个小于它的数时,商大于1。

11、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小

12、大单位到小单位,乘进率。小单位到大单位,除以进率。

13、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。

14、三角形面积是与它等底等高的*行四边形面积的一半。

15、100以内的质数歌谣

16、表示相等关系的式子叫做等式。

17、方程一定是等式;等式不一定是方程。等式>方程

18、20以内的自然数中(包括20),奇数有()偶数有()

19、5□中最大填()时这个数能被3整除,这个数的约数有()

20、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()

21、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6*方分米,这段长方体钢材的体积是()立方分米。

22、一个非0自然数不是质数,就是合数。()

23、一个长方体(不含正方体)最多有8条棱相等。()

24、9×1.4+2×0.16200-(3.05+7.1)×18

25、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?

26、求近似数的方法一般有三种:

27、小数四则运算顺序和运算定律跟整数是一样的。

28、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

29、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

30、事件发生的机会(或概率)有大小。

相关词条