1、同角或等角的余角相等——余角=90-角度。
2、推论1
3、推论2
4、*行四边形性质定理3
5、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
6、点、线、面、体
7、生活中的立体图形
8、线段的性质
9、角的度量
10、①直线L和⊙O相交
11、切线的性质定理
12、有理数减法:减去一个数,等于加上这个数的相反数。
13、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
14、内公切线长=d-(R-r)
15、高线、中线、角*分线的意义和做法
16、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
17、直角三角形中,30°角所对的直角边等于斜边的一半。
18、多边形的内角:多边形相邻两边组成的角叫做它的内角。
19、公式与性质
20、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
21、推论2经过切点且垂直于切线的直线必经过圆心
22、扇形面积公式:S扇形=n兀R^2/360=LR/2
23、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
24、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
25、函数图象的最低点和最高点.
26、在正数前面加上负号“-”的数叫做负数。
27、邻边相等的矩形。
28、过一点有且只有一条直线和已知直线垂直。
29、推论2三角形的一个外角等于和它不相邻的两个内角的和。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合。
32、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合。
33、*行四边形性质定理1*行四边形的对角相等。
34、矩形判定定理1有三个角是直角的四边形是矩形。
35、菱形判定定理1四边都相等的四边形是菱形。
36、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
37、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
38、圆是定点的距离等于定长的点的集合。
39、定理一条弧所对的圆周角等于它所对的圆心角的一半。
40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
41、推论2经过切点且垂直于切线的直线必经过圆心。
42、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
43、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
44、运算法则(加、减、乘、除、乘方、开方)
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
47、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
48、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
49、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
50、不等式的解法:
——初中数学知识点总结 100句菁华
1、如果两条直线都和第三条直线*行,这两条直线也互相*行
2、两直线*行,同旁内角互补
3、角边角公理(
4、定理3
5、勾股定理
6、*行四边形性质定理2
7、*行四边形判定定理3
8、矩形判定定理1
9、矩形判定定理2
10、几种几何图形的重心:
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、乘方的定义:
13、*行于三角形的一边,并且和其他两边相交的直线,
14、相似三角形判定定理1
15、混合运算法则:先乘方,后乘除,最后加减。
16、几何图形
17、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
18、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
19、性质定理3
20、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
21、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
22、圆是定点的距离等于定长的点的集合
23、圆的外部可以看作是圆心的距离大于半径的点的集合
24、同圆或等圆的半径相等
25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、角的度量
29、角的*分线
30、角的性质
31、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
32、①直线L和⊙O相交
33、一元一次方程
34、切割线定理
35、有理数加法
36、正三角形面积√3a^2/4
37、弧长计算公式:L=n兀R/180——》L=nR
38、列一元一次方程解应用题:
39、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
40、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
41、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
42、三角形内角和定理:三角形三个内角的和等于180°
43、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
44、等腰三角形的判定:等角对等边。
45、等边三角形的判定:三个角都相等的三角形是等腰三角形。
46、s菱=争6(n、6分别为对角线长)
47、单项式的系数:是指单项式中的数字因数;
48、对称性:等腰梯形是轴对称图形
49、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
50、推论2经过切点且垂直于切线的直线必经过圆心
51、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
52、扇形面积公式:S扇形=n兀R^2/360=LR/2
53、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
54、求出每段的解析式.
55、函数图象的最低点和最高点.
56、一元一次方程根的情况
57、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
58、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
59、大于0的数叫做正数。
60、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
61、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
62、四边形
63、图形的*移和旋转
64、统计
65、如果两条直线都和第三条直线*行,这两条直线也互相*行。
66、同位角相等,两直线*行。
67、两直线*行,内错角相等。
68、推论1直角三角形的两个锐角互余。
69、推论2三角形的一个外角等于和它不相邻的两个内角的和。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、定理四边形的内角和等于360°。
72、*行四边形性质定理1*行四边形的对角相等。
73、*行四边形性质定理2*行四边形的对边相等。
74、*行四边形判定定理4一组对边*行相等的四边形是*行四边形。
75、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
76、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
77、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰。
78、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
79、性质定理2相似三角形周长的比等于相似比。
80、圆的内部可以看作是圆心的距离小于半径的点的集合。
81、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧。
82、推论2圆的两条*行弦所夹的弧相等。
83、圆是以圆心为对称中心的中心对称图形。
84、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
85、定理相交两圆的连心线垂直*分两圆的公共弦。
86、弧长计算公式:L=n兀R/180。
87、乘法与因式分解
88、三角不等式
89、判别式:
90、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
91、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
92、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
93、*行:两条直线不相交。互相*行的两条直线,互为*行线。a∥b(在同一*面内,不相交的两条直线叫做*行线。)
94、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
95、证明:推理的过程叫做证明。
96、坐标:数轴(或*面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
97、原点:两个数轴的交点叫做*面直角坐标系的原点。
98、特殊位置的点的坐标的特点:
99、三大规律
100、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
——高等数学知识点总结 50句菁华
1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
3、掌握不定积分的换元积分法。
4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。
6、会解欧拉方程。
7、能力层面
8、做题之后加强反思。
9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
10、列方程解应用题的常用公式:
11、有理数:①整数→正整数,0,负整数;
12、方程与方程组
13、角
14、同角或等角的补角相等
15、同角或等角的余角相等——余角=90-角度。
16、直线外一点与直线上各点连接的所有线段中,垂线段最短
17、同旁内角互补,两直线*行
18、两直线*行,内错角相等
19、定理
20、三角形内角和定理:
21、推论3
22、全等三角形的对应边、对应角相等
23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
24、*行四边形性质定理1
25、矩形判定定理2
26、菱形性质定理1
27、菱形面积=对角线乘积的一半,即S=(a×b)÷2
28、菱形判定定理2
29、正方形性质定理1
30、等腰梯形判定定理
31、*行线分线段成比例定理
32、相似三角形判定定理1
33、判定定理2
34、性质定理1
35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
36、切线的判定定理
37、圆的外切四边形的两组对边的和相等
38、如果两个圆相切,那么切点一定在连心线上
39、正n边形的每个内角都等于(n-2)×180°/n
40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
41、弧长计算公式:L=n兀R/180——》L=nR
42、绝对值:
43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
44、混合运算法则:先乘方,后乘除,最后加减。
45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
——数学知识点总结 40句菁华
1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
3、2.1直线与*面*行的判定
4、2.2*面与*面*行的判定
5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
6、2.3—2.2.4直线与*面、*面与*面*行的性质
7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
8、定理:垂直于同一个*面的两条直线*行。
9、Venn图:
10、“相等”关系:A=B(5≥5,且5≤5,则5=5)
11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.
12、圆的外部可以看作是圆心的距离大于半径的点的集合
13、到已知角的两边距离相等的点的轨迹,是这个角的*分线
14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
15、定理不在同一直线上的三点确定一个圆。
16、圆是以圆心为对称中心的中心对称图形
17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
19、切线的性质定理:圆的切线垂直于经过切点的半径
20、弦切角定理:弦切角等于它所夹的弧对的圆周角
21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
22、弧长计算公式:L=n兀R/180
23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
25、圆方程
26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
30、集合的分类:有限集,无限集,空集。
31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
32、根据自变量的取值范围对函数进行分段.
33、空间中的*行问题
34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
35、忽视集合元素的三性致误
36、函数的单调区间理解不准致误
37、三角函数的单调性判断致误
38、对数列的定义、性质理解错误
39、数列中的最值错误
40、忽视三视图中的实、虚线致误
——八年级上册数学知识点 50句菁华
1、全等图形:能够完全重合的两个图形就是全等图形。
2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、边边边公理(SSS)有三边对应相等的两个三角形全等
4、定理2到一个角的两边的距离相同的点,在这个角的*分线上
5、推论1等腰三角形顶角的*分线*分底边并且垂直于底边
6、推论1三个角都相等的三角形是等边三角形
7、定理1关于某条直线对称的两个图形是全等形
8、逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称
9、推论夹在两条*行线间的*行线段相等
10、矩形判定定理1有三个角是直角的四边形是矩形
11、菱形判定定理2对角线互相垂直的*行四边形是菱形
12、定理1关于中心对称的两个图形是全等的
13、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
14、与一条线段两个端点距离相等的点,在线段的垂直*分线上
15、三角形三条边的垂直*分线相交于一点,这个点到三角形三个顶点的距离相等
16、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
17、等边三角形的判定:
18、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
19、定理1 在角的*分线上的点到这个角的两边的距离相等
20、推论3 等边三角形的各角都相等,并且每一个角都等于60°
21、推论 2 有一个角等于60°的等腰三角形是等边三角形
22、关于坐标轴、原点的对称点:
23、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
24、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。
25、公式与性质:
26、要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。
27、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
28、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
29、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用*滑曲线连接各点)。
30、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。
31、完全*方公式
32、同底数幂的除法
33、分组分解法:
34、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
35、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
36、作为最后结果,如果是分式则应该是最简分式.
37、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
38、函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.
39、二者之间存在着从属关系。2、存在条件相同。3、0的算术*方根与*方根都是0
40、二元一次方程组
41、二元一次方程组的解
42、*均数
43、中位数与众数
44、从统计图分析数据的集中趋势
45、数据的离散程度
46、函数的三种表示法及其优缺点
47、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、
48、对角线互相*分的四边形是*行四边形;
49、对角线相等的*行四边形是矩形。
50、实数的绝对值:
——初中生物知识点总结 50句菁华
1、保护生物圈,人人有责。
2、细胞是生物生命活动的基本结构和功能单位。
3、植物细胞特有的结构:细胞壁、叶绿体和液泡。
4、口腔上皮细胞装片的制作和观察。
5、种子萌发的过程:先吸收水分(运输营养物质的需要),胚根突破种皮,形成根,胚轴伸长,胚芽发育成茎和叶。
6、青春期的身体变化。
7、血液的成分和功能。
8、靠可以分泌黏液、始终保持湿润的体壁来呼吸。
9、哺乳动物的主要特征:
10、动物在自然界中的作用:
11、遗传是指亲子间的相似性,变异是指亲子间和子代间的差异。生物的遗传和变异是通过生殖和发育而实现的;
12、我国婚姻法规定:直系血亲和三代以内的旁系血亲之间禁止结婚。因为这样,后代换遗传病的几率加大。
13、人类应用遗传变异原理培育新品种例子:人工选择、杂交育种、太空育种(基因突变)。
14、细胞主要由细胞壁、细胞膜、细胞质、细胞核构成。细胞内含有液泡、叶绿体。
15、DNA的每个片段具有特定的遗传信息。这些片段叫基因。
16、人体的四种基本组织:
17、人体的八大系统:运动系统、消化系统、呼吸系统、循环系统、泌尿系统、神经系统、内分泌系统、生殖系统。
18、哺乳动物的运动系统由骨骼和肌肉组成。
19、脱臼:关节头从关节窝滑脱出来。(由于进行体育运动或从事体力劳动,因用力过猛或不慎摔倒所致。)
20、蝶蛾类昆虫的雌虫可产生性外激素,通过性外激素吸引雄虫来交尾。据此,可以制造昆虫性外激素诱杀昆虫或干扰使昆虫不能识别同种昆虫的性外激素。
21、在光照条件下,植物能进行的生命活动有(光合作用、蒸腾作用、呼吸作用)。
22、在人体的八大系统中,把呼吸系统、消化系统、泌尿系统和组织细胞联系在一起的系统是(循环系统)。
23、酸味,甜味、辣味、刺激性的气味、决定花瓣的颜色的花表素等都是溶解在细胞的(液泡)的细胞中的成分中。
24、观察动物细胞时,载玻片的中央滴的是(0.9℅的生理盐水),目的是(保持细胞的'正常形态。若滴加清水,则会出现(吸水胀破)。观察植物细胞时,滴加的是(清水)细胞会保持饱满的形态,这与(细胞壁)有关。
25、保护生物多样性最有效的措施是建立自然保护区。
26、呼吸作用在生产生活中的运用:
27、绿色植物进行光合作用,产生由于生物呼吸作用或者燃料燃烧消耗的氧气,吸收其释放出的二氧化碳,对于碳--氧*衡有非常重大的意义。
28、种子植物的分类:根据子叶数目分为:
29、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。
30、蕨类植物出现根、茎、叶等器官的分化,而且还具有输导组织、机械组织,所以植株比较高大。
31、藻类植物通过光合作用制造的有机物可以作为鱼的饵料,放出的氧气除供鱼类呼吸外,而且是大气中氧气的重要来源。
32、运输途径。
33、我国主要的植被类型。
34、我国森林覆盖率16、55%。
35、我国每年3月12日为植树节。
36、生物分类单位中,由大到小排列:(界,门,纲,目,科,属,种),基本单位是(种)。
37、人体的结构层次中,由小到大的排列顺序是(细胞→组织→器官→系统→人体)。植物的结构层次中,由小到大的排列顺序是(细胞→组织→器官→植物体) 。
38、体温恒定的动物有(鸟类、哺乳类)。
39、接种的疫苗属于(抗原),注射的血清属于(抗体),都产生(特异性免疫)。
40、根毛细胞吸水的条件是(细胞液浓度>周围溶液浓度)。
41、视觉感受器是(视网膜),听觉感受器是(耳蜗)。
42、控制父母性状的基因,通过(生殖细胞)传给后代。
43、人体内静脉血变为动脉血,由(肺的换气)实现;动脉血变为静脉血,由(组织内的气体交换)实现。
44、蔬菜水果堆放久了,引起发热的原因是(呼吸作用释放能量)。
45、唯一不含消化酶的消化液是(胆汁),它由(肝脏)产生。
46、生态系统自动调节能力是有限的,生态系统一般遵守生态*衡;生态系统中物种越多越复杂,生态系统自动调节能力越强,生态系统越稳定。
47、生物体的各种组织是由细胞分裂,分化形成的,分裂的结果形成组织。生物体由小到大,表现出的生长现象,也是由于细胞的(分裂,分化)形成的。
48、利用显微镜观察装片:常用的玻片标本有:切片——用从生物体上切取的薄片制成;涂片——用液体的生物材料经过涂抹制成;装片—从生物体上撕下或调取少量的材料制成。
49、线粒体和叶绿体是细胞里的能量转换器:叶绿体将光能转变成化学能,储存在它所制 1
50、绿色开花植物的六大器官:根、茎、叶(属于营养器官)、花、果实、种子(属于生殖器官)
——七年级下册数学知识点总结 40句菁华
1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、两条直线被第三条直线所截:
13、垂直公理:过一点有且只有一条直线与已知直线垂直。
14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
15、*行线的性质:
16、*面上不相重合的两条直线之间的位置关系为_______或________
17、倒数
18、大于0的数叫做正数(positive number)。
19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
20、有理数减法法则
21、有理数中仍然有:乘积是1的两个数互为倒数。
22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
25、根据有理数的乘法法则可以得出
26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
30、包围着体的是面(surface),面有*的面和曲的面两种。
31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
32、角∠(angle)也是一种基本的几何图形。
33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
34、等角的补角相等,等角的余角相等。
35、相反数的几何意义
36、相反数的表示方法
37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
40、整式加减的一般步骤: