1、代数式
2、整式与分式
3、一元二次方程的二次函数的关系
4、解一元二次方程的步骤:
5、角
6、同旁内角互补,两直线*行
7、两直线*行,同旁内角互补
8、定理
9、推论
10、三角形内角和定理:
11、全等三角形的对应边、对应角相等
12、定理1
13、角的*分线是到角的两边距离相等的所有点的集合
14、等腰三角形的性质定理
15、逆定理
16、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
17、定理3
18、勾股定理的逆定理
19、*行四边形性质定理1
20、*行四边形性质定理3
21、*行四边形判定定理2
22、矩形性质定理1
23、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
24、判定定理3
25、圆的内部可以看作是圆心的距离小于半径的点的集合
26、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
27、圆是以圆心为对称中心的中心对称图形
28、相交弦定理
29、切割线定理
30、①两圆外离
31、正三角形面积√3a^2/4
32、三角形的分类
33、三角形内角和定理:三角形三个内角的和等于180°
34、两组对边*行的四边形是*行四边形。
35、对称性:矩形是轴对称图形也是中心对称图形。
36、s菱=争6(n、6分别为对角线长)
37、定义:有一组邻边相等并且有一个角是直角的*行四边形叫做正方形
38、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
39、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
40、多边形对角线的条数:
41、①直线L和⊙O相交d
42、扇形面积公式:S扇形=n兀R^2/360=LR/2
43、定理:一条弧所对的圆周角等于它所对的圆心角的一半
44、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
45、绝对值:
46、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
47、有理数乘法法则:
48、有理数乘法的运算律:
49、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
50、列方程解应用题的常用公式:
——初中数学知识点总结 50句菁华
1、同角或等角的余角相等——余角=90-角度。
2、推论1
3、推论2
4、*行四边形性质定理3
5、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
6、点、线、面、体
7、生活中的立体图形
8、线段的性质
9、角的度量
10、①直线L和⊙O相交
11、切线的性质定理
12、有理数减法:减去一个数,等于加上这个数的相反数。
13、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
14、内公切线长=d-(R-r)
15、高线、中线、角*分线的意义和做法
16、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
17、直角三角形中,30°角所对的直角边等于斜边的一半。
18、多边形的内角:多边形相邻两边组成的角叫做它的内角。
19、公式与性质
20、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
21、推论2经过切点且垂直于切线的直线必经过圆心
22、扇形面积公式:S扇形=n兀R^2/360=LR/2
23、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
24、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
25、函数图象的最低点和最高点.
26、在正数前面加上负号“-”的数叫做负数。
27、邻边相等的矩形。
28、过一点有且只有一条直线和已知直线垂直。
29、推论2三角形的一个外角等于和它不相邻的两个内角的和。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合。
32、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合。
33、*行四边形性质定理1*行四边形的对角相等。
34、矩形判定定理1有三个角是直角的四边形是矩形。
35、菱形判定定理1四边都相等的四边形是菱形。
36、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
37、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
38、圆是定点的距离等于定长的点的集合。
39、定理一条弧所对的圆周角等于它所对的圆心角的一半。
40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
41、推论2经过切点且垂直于切线的直线必经过圆心。
42、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
43、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
44、运算法则(加、减、乘、除、乘方、开方)
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
47、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
48、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
49、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
50、不等式的解法:
——初三化学全册知识点归纳 50句菁华
1、化学性质——可燃性。
2、定义:原子是化学变化中的最小粒子
3、化学变化的实质:分子的分化和原子的重新组合。
4、分子是保持化学性质的最小微粒。原子是化学变化中的最小微粒。
5、元素是具有相同核电荷数(即质子数)的同一类原子的总称。
6、在原子中,质子数 = 核电荷数 = 核外电子数。
7、镁离子和镁原子具有相同的质子数或核电荷数。
8、地壳中含量最多的元素是氧元素。最多的金属元素是铝元素。
9、石油、煤、天然气都是混合物。
10、氧化物是由两种元素组成的,其中一种是氧元素的化合物。
11、化学反应的基本类型是化合反应、分解反应、置换反应、复分解反应。
12、我国古代三大化学工艺:造纸,制火药,烧瓷器。
13、构成物质的三种微粒:分子,原子,离子。
14、不带电的三种微粒:分子,原子,中子。
15、构成原子的三种微粒:质子,中子,电子。
16、复分解反应能否发生的三个条件:生成水、气体或者沉淀
17、三大化学肥料:N、P、K
18、炼铁的三种氧化物:铁矿石,焦炭,石灰石。
19、常见的三种强酸:盐酸,硫酸,硝酸。
20、酒精灯的三个火焰:内焰,外焰,焰心。
21、使用酒精灯有三禁:禁止向燃着的灯里添加酒精,禁止用酒精灯去引燃另一只酒精灯,禁止用嘴吹灭酒精灯。
22、导电性最强的金属是银。
23、人体中含量最多的元素是氧。
24、铁的氧化物有三种,其化学式为(1)FeO、(2)Fe2O3、(3)Fe3O4。
25、通常使用的灭火器有三种:泡沫灭火器;干粉灭火器;液态二氧化碳灭火器。
26、固体物质的溶解度随温度变化的情况可分为三类:(1)大部分固体物质溶解度随温度的升高而增大;(2)少数物质溶解度受温度的影响很小;(3)极少数物质溶解度随温度的升高而减小。
27、当今世界上最重要的三大矿物燃料是:煤、石油、天然气。
28、教材中出现的三次淡蓝色:(1)液态氧气是淡蓝色(2)硫在空气中燃烧有微弱的淡蓝色火焰、(3)氢气在空气中燃烧有淡蓝色火焰。
29、与铜元素有关的三种蓝色:(1)硫酸铜晶体;(2)氢氧化铜沉淀;(3)硫酸铜溶液。
30、酒精灯的火焰分为三部分:外焰、内焰、焰心,其中外焰温度最高。
31、工业三废:废水、废渣、废气
32、质量守恒解释的原子三不变:种类不改变、数目不增减、质量不变化
33、构成物质的三种粒子:分子、原子、离
34、催化剂:一变二不变(改变物质的反应速率,它本身的化学性质和质量不变的物质是催化剂)
35、用洗气瓶除杂的连接:长进短出
36、化学变化和物理变化的根本区别是:有没有新物质的生成。
37、物理性质——状态、气味、熔点、沸点、硬度、密度、延展性、溶解性、挥发性、导电性、吸附性等。
38、法国化学家拉瓦锡提出了空气主要是由氧气和氮气组成的。
39、金刚石(C)是自然界中最硬的物质,石墨(C)是最软的矿物之一,活性炭、木炭具有强烈的吸附性,焦炭用于冶铁,炭黑加到橡胶里能够增加轮胎的耐磨性。
40、构成物质的三种微粒是:分子、原子、离子。
41、水的净化效果由低到高的是静置、吸附、过滤、蒸馏(均为物理方法),其中净化效果最好的操作是蒸馏;既有过滤作用又有吸附作用的净水剂是活性炭。
42、碳酸钠跟盐酸反应:Na2CO3 + 2HCl = 2NaCl +H2O +CO2↑有气泡产生固体逐渐减少。
43、碳酸氢钠跟盐酸反应:NaHCO3 + HCl = NaCl +H2O + CO2↑有气泡产生固体逐渐减少。
44、氢氧化钙跟二氧化碳反应:Ca(OH)2 + CO2 = CaCO3↓ + H2O 使澄清石灰水变浑浊。
45、锌跟稀硫酸反应: Zn + H2SO4 = ZnSO4 + H2 ↑。
46、铁跟稀盐酸反应: Fe + 2HCl = FeCl2 + H2 ↑ 有气泡产生,铁逐渐减少。
47、铁锈跟稀盐酸反应:Fe2O3 +6HCl = 2FeCl3 + 3H2O 红色铁锈逐渐消失。
48、铁锈跟稀硫酸反应:Fe2O3 + 3H2SO4 = Fe2(SO4)3 + 3H2O 溶液变成黄色。
49、工业生产是空气污染的一个重要.工业生产排放到大气中的污染物种类繁多,有烟尘、硫的氧化物(如二氧化硫等)、氮的氧化物(如二氧化氮等)、有机化合物、卤化物、碳化合物等.
50、氮气,用途也比较广泛.它是制硝酸和化肥的重要原料;由于氮气的化学性质不活泼,因此常用作保护气,如焊接金属时常用氮作保护气,灯泡中充氮以延长使用寿命,食品包装时充氮以防腐;医疗上可在液氮冷冻麻醉条件下做手术;超导材料在液氮的低温环境下能显示超导性能.
——初中数学重要知识点总结 40句菁华
1、求不等式的解集的过程,叫做解不等式。
2、用数轴表示不等式的方法。
3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
5、一元一次不等式组的解法
6、不等式与不等式组
7、列一元一次方程解应用题:
8、混合运算法则:先乘方,后乘除,最后加减。
9、代数式
10、解一元二次方程的步骤:
11、角
12、同角或等角的余角相等——余角=90-角度。
13、过一点有且只有一条直线和已知直线垂直
14、直线外一点与直线上各点连接的所有线段中,垂线段最短
15、同位角相等,两直线*行
16、同旁内角互补,两直线*行
17、推论
18、三角形内角和定理:
19、推论1
20、直角三角形斜边上的中线等于斜边上的一半
21、矩形性质定理1
22、菱形性质定理2
23、三角形中位线定理
24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
26、性质定理1
27、性质定理2
28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
31、切线的性质定理
32、①两圆外离
33、弧长计算公式:L=n兀R/180——》L=nR
34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
35、切线的性质定理圆的切线垂直于经过切点的半径
36、推论1经过圆心且垂直于切线的直线必经过切点
37、定理相交两圆的连心线垂直*分两圆的公共弦
38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正三角形面积√3a/4a表示边长
40、弧长计算公式:L=n兀R/180
——初中数学知识点总结 100句菁华
1、如果两条直线都和第三条直线*行,这两条直线也互相*行
2、两直线*行,同旁内角互补
3、角边角公理(
4、定理3
5、勾股定理
6、*行四边形性质定理2
7、*行四边形判定定理3
8、矩形判定定理1
9、矩形判定定理2
10、几种几何图形的重心:
11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
12、乘方的定义:
13、*行于三角形的一边,并且和其他两边相交的直线,
14、相似三角形判定定理1
15、混合运算法则:先乘方,后乘除,最后加减。
16、几何图形
17、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
18、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
19、性质定理3
20、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
21、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
22、圆是定点的距离等于定长的点的集合
23、圆的外部可以看作是圆心的距离大于半径的点的集合
24、同圆或等圆的半径相等
25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
26、到已知角的两边距离相等的点的轨迹,是这个角的*分线
27、去括号法则
28、角的度量
29、角的*分线
30、角的性质
31、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
32、①直线L和⊙O相交
33、一元一次方程
34、切割线定理
35、有理数加法
36、正三角形面积√3a^2/4
37、弧长计算公式:L=n兀R/180——》L=nR
38、列一元一次方程解应用题:
39、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
40、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
41、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
42、三角形内角和定理:三角形三个内角的和等于180°
43、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
44、等腰三角形的判定:等角对等边。
45、等边三角形的判定:三个角都相等的三角形是等腰三角形。
46、s菱=争6(n、6分别为对角线长)
47、单项式的系数:是指单项式中的数字因数;
48、对称性:等腰梯形是轴对称图形
49、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
50、推论2经过切点且垂直于切线的直线必经过圆心
51、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
52、扇形面积公式:S扇形=n兀R^2/360=LR/2
53、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
54、求出每段的解析式.
55、函数图象的最低点和最高点.
56、一元一次方程根的情况
57、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
58、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
59、大于0的数叫做正数。
60、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
61、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
62、四边形
63、图形的*移和旋转
64、统计
65、如果两条直线都和第三条直线*行,这两条直线也互相*行。
66、同位角相等,两直线*行。
67、两直线*行,内错角相等。
68、推论1直角三角形的两个锐角互余。
69、推论2三角形的一个外角等于和它不相邻的两个内角的和。
70、角的*分线是到角的两边距离相等的所有点的集合。
71、定理四边形的内角和等于360°。
72、*行四边形性质定理1*行四边形的对角相等。
73、*行四边形性质定理2*行四边形的对边相等。
74、*行四边形判定定理4一组对边*行相等的四边形是*行四边形。
75、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
76、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
77、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰。
78、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
79、性质定理2相似三角形周长的比等于相似比。
80、圆的内部可以看作是圆心的距离小于半径的点的集合。
81、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧。
82、推论2圆的两条*行弦所夹的弧相等。
83、圆是以圆心为对称中心的中心对称图形。
84、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
85、定理相交两圆的连心线垂直*分两圆的公共弦。
86、弧长计算公式:L=n兀R/180。
87、乘法与因式分解
88、三角不等式
89、判别式:
90、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
91、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
92、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
93、*行:两条直线不相交。互相*行的两条直线,互为*行线。a∥b(在同一*面内,不相交的两条直线叫做*行线。)
94、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
95、证明:推理的过程叫做证明。
96、坐标:数轴(或*面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
97、原点:两个数轴的交点叫做*面直角坐标系的原点。
98、特殊位置的点的坐标的特点:
99、三大规律
100、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
——数学七年级知识点 60句菁华
1、具有相反意义的量
2、三角形内角和定理:三角形三个内角的和等于180°
3、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
4、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
5、负数:小于0的数。
6、角∠也是一种基本的几何图形。
7、0即不是正数也不是负数。
8、如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
9、整数:正整数、0、负整数,统称整数。
10、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
11、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
12、垂直公理:过一点有且只有一条直线与已知直线垂直。
13、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
14、同底数幂相乘,底不变,指数相加。
15、先乘方,再乘除,最后加减。
16、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
17、注重预习培养自学能力
18、对顶角和邻补角的关系
19、项:组成多项式的每个单项式叫做多项式的项。
20、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
21、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。
22、假命题:条件和结果相矛盾的命题是假命题。
23、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
24、在正数前面加上负号“-”的数叫做负数(negativenumber).
25、有理数减法法则
26、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).
28、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
29、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
30、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
31、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
32、不可能事件发生的概率为0,记作P(不可能事件)=0;
33、不确定事件发生的概率在0—1之间,记作0
34、判断三条线段能否组成三角形。
35、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
36、注意等底等高知识的考试
37、列代数式的几个注意事项
38、三条边分别对应相等的两个三角形全等。
39、勾股定理:直角三角形两直角边a、b的*方和等于斜边c的*方a2+b2=c2。
40、两角及一边对应相等的两个三角形全等。
41、两边及它们的夹角对应相等的两个三角形全等。
42、两条直角边对应相等的两个直角三角形全等。
43、一条斜边和一直角边对应相等的两个三角形全等。
44、一角和一边对应相等的两个直角三角形不一定全等。
45、全等图形
46、全等三角形
47、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
48、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
49、数学公式一定要记熟,并且还要会推导,能举一反三。
50、*移:
51、两点确定一条直线,两点之间线段最短._______________叫两点间距离.
52、函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量、
53、正数和负数的概念
54、绝对值的性质
55、绝对值的化简
56、保持好心态
57、正数:比0大的数叫正数。
58、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
59、有理数乘法法则:
60、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。
——中考数学知识点 50句菁华
1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
2、直角坐标系中,点A(3,0)在轴上。
3、直角坐标系中,点A(-2,3)在第四象限。
4、直角坐标系中,点A(-2,1)在第二象限。
5、数据1,2,3,4,5的中位数是3.
6、cs30°=。
7、sin260°+cs260°=1.
8、tan45°=1.
9、任意一个三角形一定有一个外接圆。
10、同圆或等圆的半径相等。
11、经过圆心*分弦的直径垂直于弦。
12、非负数:正实数与零的统称。(表为:x≥0)
13、相反数:①定义及表示法
14、奇数、偶数、质数、合数(正整数-自然数)
15、单项式与多项式
16、系数与指数
17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
19、科学记数法:(1≤a<10,n是整数=
20、个体:总体中每一个考察对象。
21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
24、一次函数
25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
27、圆的定义(两种)
28、正多边形及计算
29、圆柱、圆锥的侧面展开图及相关计算
30、作法与图形:通过如下3个步骤
31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。
32、抛物线是轴对称图形。对称轴为直线
33、一次项系数b和二次项系数a共同决定对称轴的位置。
34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。
35、用待定系数法求二次函数的解析式
36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
37、见直径往往作直径上的'圆周角
38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
40、(P11)小数四则运算顺序跟整数是一样的。
41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
43、方程的解是一个数;
44、长方形框架拉成*行四边形,周长不变,面积变小。
45、5 4 0 0 1
46、重心是三角形内到三边距离之积最大的点。
47、sin260+ cos260= 1.
48、tan45= 1.
49、cos60+ sin30= 1.
50、直角三角形两个锐角互余。
——五年级上册数学知识点 50句菁华
1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、用计算器来验算
6、有限小数:小数部分的位数是有限的小数,叫做有限小数。
7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
8、长方形面积=长×宽字母公式:s=ab
9、组合图形:转化成已学的简单图形,通过加、减进行计算。
10、重叠法;
11、分割*移法;
12、公式计算面积法;
13、三角形面积=底×高÷2(s三=ah÷2)
14、1*方千米=100公顷=1000000*方米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、求近似数的方法一般有三种:(P10)
17、(P11)小数四则运算顺序跟整数是一样的。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、(关于“大约)应用题:
20、圆柱的侧面积=底面圆的周长×高:S=ch。
21、长方形的周长=(长+宽)×2:C=(a+b)×2。
22、*行四边形的面积=底×高:S=ah。
23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。
24、圆的面积=圆周率×半径×半径:s=πr2。
25、三角形的面积=底×高÷2 S=ah÷2
26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
31、所有的方程都是等式,但等式不一定都是方程。
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
33、身份证码: 18 位
34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
35、可以表示起点
36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
38、表示相等关系的式子叫做等式。
39、方程一定是等式;等式不一定是方程。等式>方程
40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?
43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
44、求近似数的方法一般有三种:
45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
46、除法中的变化规律:
47、有些事件的发生是确定的,有些是不确定的。 可能
48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
49、正方形里最大的圆。两者联系:边长=直径
50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——初中化学重点知识点归纳 50句菁华
1、氢氧化铝药物治疗胃酸过多:3HCl + Al(OH)3 ==== AlCl3 + 3H2O
2、硫酸和氢氧化铜反应:H2SO4 + Cu(OH)2 ==== CuSO4 + 2H2O
3、大理石与稀盐酸反应:CaCO3 + 2HCl === CaCl2 + H2O + CO2↑(实验室制CO2气体)
4、(1)具有刺激性气体的气体: NH3(氨气)、SO2、HCl(皆为无色)
5、红褐色沉淀:氢氧化铁。
6、紫黑色固体:高锰酸钾;
7、银白色固体:银,铁,镁,铝,汞等金属;
8、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液;
9、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液;
10、紫黑色固体:高锰酸钾
11、淡黄色固体:硫磺
12、红褐色固体:氢氧化铁
13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液
14、紫色溶液:石蕊溶液
15、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。
16、我国古代三大化学工艺:造纸,制火药,烧瓷器。
17、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。
18、co的三种化学性质:可燃性,还原性,毒性。
19、酒精灯的三个火焰:内焰,外焰,焰心。
20、金属活动顺序的三含义:
21、石灰石/大理石:(caco3)
22、生铁/钢:(fe)
23、木炭/焦炭/炭黑/活性炭:(c)
24、氯化钠(nacl):食盐
25、碳酸钠(na2co3):纯碱,苏打,口碱
26、氢氯酸(hcl):盐酸
27、乙酸(ch3cooh):醋酸
28、过氧化氢(h2o2):双氧水
29、还原氧化铜常用的三种还原剂氢气、一氧化碳、碳。
30、氢气作为燃料有三大优点:资源丰富、发热量高、燃烧后的产物是水不污染环境。
31、构成物质的元素可分为三类即
32、生铁一般分为三种:白口铁、灰口铁、球墨铸铁。
33、炼钢的主要设备有三种:转炉、电炉、*炉。
34、常与温度有关的三个反应条件是点燃、加热、高温。
35、收集气体一般有三种方法:排水法、向上排空法、向下排空法。
36、水污染的三个主要原因:
37、通常使用的灭火器有三种:泡沫灭火器;干粉灭火器;液态二氧化碳灭火器。
38、原子不一定比分子小(不能说“分子大,原子小”)
39、盐的组成中不一定有金属元素,如NH4+是阳离子,具有金属离子的性质,但不是金属离子。
40、阳离子不一定是金属离子。如H+、NH4+。
41、酸式盐的溶液不一定显酸性(即PH不一定小于7),如NaHCO3溶液显碱性。但硫酸氢钠溶液显酸性(NaHSO4=Na++H++SO42-),所以能电离出氢离子的物质不一定是酸。
42、所有化学反应并不一定都属基本反应类型,不属基本反应的有:①CO与金属氧化物的反应;②酸性氧化物与碱的反应;③有机物的燃烧。
43、凡是单质铁参加的置换反应(铁与酸、盐的反应),反应后铁一定显+2价(即生成亚铁盐)。29、凡金属与酸发生的置换反应,反应后溶液的质量一定增加。
44、凡常温下能与水反应的金属(如K、Ca、Na),就一定不能与盐溶液发生置换反应;但它们与酸反应是最为激烈的。
45、铁的物理性质:银白色金属光泽,质软,有良好的延展性,是电和热的良导体。
46、防止铁制品生绣的方法:
47、20℃时,易溶物质的溶解度为﹥10g,可溶物质的溶解度1g-10g,微溶物质的溶解度为0.01g-1g,难溶物质的溶解度为﹤0.01g。
48、物质的变化及性质
49、化学用语
50、托盘天*只能用于粗略的称量,能称准到克。
——初中物理易错知识点 40句菁华
1、匀速直线运动的速度一定不变。只要是匀速直线运动,则速度一定是一个定值。
2、受力分析的步骤:确定研究对象;找重力;找接触物体;判断和接触物体之间是否有压力、支持力、摩擦力、拉力等其它力。
3、物体受*衡力物体处于*衡状态(静止或匀速直线运动)。这两个可以相互推导。物体受非*衡力:若合力和运动方向一致,物体做加速运动,反之,做减速运动。
4、压强的受力面积是接触面积,单位是m2。注意接触面积是一个还是多个,更要注意单位换算:1cm2=10-4m2.
5、有力不一定做功。有力有距离,并且力距离要对应才做功。
6、简单机械的机械效率不是固定不变的。滑轮组的机械效率除了跟动滑轮的重力有关外还跟所提升物体的重力有关,物体越重,拉力也越大,机械效率越高,但动滑轮的重力不变。
7、物体内能增大,温度不一定升高(晶体熔化,液化沸腾);物体内能增加,不一定是热传递(还可以是做功);物体吸热,内能一定增加;物体吸热温度不一定升高(晶体熔化,液体沸腾);物体温度升高,内能不一定升高(还和物体的质量等因素有关);物体温度升高,不一定是热传递(还可以是做功)。
8、太阳能电池是把太阳能转化为电能。并不是把化学能转化为电能。
9、当前人们利用的主要是可控核裂变(核反应堆)。太阳内部不断发生着核聚变。
10、反射和拆射总是同时发生的,
11、透明体的颜色由透过和色光决定,和物体顔色相同的光可以透过,不同的色光则被吸收。
12、晶体有熔点,常见的有:海波,冰,石英,水晶和各种金属;非晶体没有熔点,常见的有:蜡、松香、沥青、玻璃。
13、六种物态变化:
14、计算电能可以用KW和h计算,最后再用1KWh=3.6×106J换算。
15、家庭电路中开关必须和灯串联,开关必须连在火线上,灯口螺旋要接零线上,保险丝只在火线上接一根就可以了,插座是左零右火上接地。
16、中间时刻速度Vt/2=V*=(Vt+Vo)/2
17、中间位置速度Vx/2=[(Vo^2+Vt^2)/2]^1/2
18、位移x=V*t=Vot+1/2at^2=Vo*t+(Vt-Vo)/2*t x=(Vt^2-Vo^2)/2a
19、电阻(R):表示导体对电流的阻碍作用.国际单位:欧姆(Ω); 常用:兆欧(MΩ),千欧(KΩ);1兆欧=1000千欧; 1千欧=1000欧. 16、决定电阻大小的因素:材料,长度,横截面积和温度 17、滑动变阻器:
20、地磁的北极在地理位置的南极附近;而地磁的南极则在地理的北极附近.但并不重合,它们的交角称磁偏角,我国学者沈括最早记
21、电话基本原理:振动→强弱变化电流→振动.
22、电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫电磁感应,产生的电流叫感应
23、物态变化:物质由一种状态变为另一种状态的过程。物态变化跟温度有关。
24、物理降温:在需要降温的物体表面,涂一些易挥发且无害的液体,通过液体蒸发吸热来达到降温的效果。
25、液化:物质由气态变成固态的过程。
26、常用的液化石油气是在常温条件下,用压缩体积的办法,使它液化储存在钢瓶里的。
27、质量的测量工具:台秤、天*、戥子、地中衡等
28、纳米材料:将某些物质的尺寸加工到1~100nm时物理性质和化学性质与较大尺寸时发生了异常变化,称为纳米材料。
29、锂电池的特点:体积小、质量轻、能多次充电、对环境污染小。
30、记忆合金:主要成分是镍和钛,它独有的物理性质是:当温度达到某一数值时,材料内部的晶体结构会发生变化,从而导致了外形的变化。
31、运动:一个物体相对于另一个物体的位置改变叫做机械运动,简称运动。
32、相对静止:运动方向和运动速度相同的两个物体称为相对静止。
33、磁感线:①描述磁场的强弱和方向而假想的曲线。②磁体周围的磁感线是从它北极出来,回到南极。③磁感线越密的地方磁场越强。④磁感线不相交。
34、磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。
35、地磁的北极在地理位置的南极附近;而地磁的南极则在地理位置的北极附近。(地磁的南北极与地理的南北极并不重合,它们的交角称磁偏角,这是我国学者:沈括最早记述这一现象。)
36、奥斯特实验证明:通电导线周围存在磁场。
37、电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫感应电流。
38、产生感生电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动。
39、高压输电的原理:保持输出功率不变,提高输电电压,同时减小电流,从而减小电能的损失。
40、直流电动机原理:是利用通电线圈在磁场里受力转动的原理制成的。
——数学圆知识点总结 40句菁华
1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
2、定理:一条弧所对的圆周角等于它所对的圆心角的一半
3、①直线L和⊙O相交d﹤r
4、推论:经过切点且垂直于切线的直线必经过圆心
5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
6、圆的外切四边形的两组对边的和相等
7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
8、①两圆外离d﹥R+r
9、正三角形面积√3a2/4a表示边长
10、弧长计算公式:L=n兀R/180
11、圆心决定圆的位置,半径决定圆的大小。
12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
14、两个数相除,又叫做这两个数的比。比的后项不能为0.
15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、定理相交两圆的连心线垂直*分两圆的公共弦
20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
22、内公切线长= d-R-r外公切线长= d-R+r
23、定理一条弧所对的圆周角等于它所对的圆心角的一半
24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
26、一条弧所对的圆周角等于它所对的圆心角的一半。
27、圆的面积S=πr
28、圆锥侧面积S=rl
29、圆的标准方程
30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
33、圆的周长C=2πr=πd
34、圆锥侧面积S=πrl
35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧
36、①直线L和⊙O相交 d
37、切线的性质定理 圆的切线垂直于经过切点的半径
38、正n边形的每个内角都等于(n-2)×180°/n
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径