1、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
3、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
4、分数的意义两种解释:①把单位“1”*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
5、除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;
6、多边形面积的计算。
7、205≈2.21 (保留两位小数)
8、先算乘除,再算加减
9、有括号的先算括号内
10、真分数和假分数、带分数
11、带分数:带分数由整数和真分数组成的分数。带分数>1.
12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
13、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。
14、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
15、含有未知数的算式叫做方程。( )
16、5x表示5个x相乘。( )
17、一个三角形,底a缩小5倍,*扩大5倍,面积就缩小10倍。( )
18、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,7天可以收割多少公顷?60.4公顷大豆需要多少天才能收完
19、服装厂做一件男上衣用2.5米布料,现在有42米布料,可以做多少件这样的男上衣?
20、乘法交换律:axb=bxa
21、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
22、【体积单位换算】
23、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。
24、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。
25、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
26、常用时间单位:时、分、秒。
27、计算小数乘法末尾对齐,按整数乘法法则进行计算。
28、把因数的位置交换相乘
29、用计算器来验算
30、长方形的周长=(长+宽)×2 C=(a+b)×2
31、长方形的面积=长×宽S=ab
32、圆的面积=圆周率×半径×半径
33、镜子内外的左右方向是相反的。
34、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。
35、运动场的跑道,通常1圈是400米,2圈半是1000米。
36、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
37、常用长度单位:米、分米、厘米、毫米、千米。
38、公式:
39、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
40、因数×因数=积积÷一个因数=另一个因数
——五年级上册数学知识点 60句菁华
1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
2、理解用字母表示数的意义和作用;
3、理解简易方程的意思及其解法;
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、计算小数乘法末尾对齐,按整数乘法法则进行计算。
7、把因数的位置交换相乘
8、三角形面积=底×高÷2字母公式:s=ah÷2
9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
10、重叠法;
11、公式计算面积法;
12、正方形周长=边长×4 C = 4 a
13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
14、1*方米=100*方分米=10000*方厘米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、因数末尾有几个0,就在积的末尾添上几个0。
17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
20、长方形的面积=长×宽:S=ab。
21、长方形的周长=(长+宽)×2 C=(a+b)×2
22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
23、直径=半径×2 d=2r半径=直径÷2 r= d÷2
24、长方体的体积=长×宽×高公式:V = abh
25、长方体(或正方体)的体积=底面积×高公式:V = abh
26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。
28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
31、所有的方程都是等式,但等式不一定都是方程。
32、三角形面积公式推导:旋转
33、等底等高的*行四边形面积相等;
34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。
35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
36、封闭图形一周的长度,就是它的周长。
37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223
39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。
40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
41、只有1个因数。“1”既不是质数,也不是合数。
42、表示相等关系的式子叫做等式。
43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
45、1992所有的质因数的和是( 88 )。
46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。
47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?
48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?
49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
50、<<1,□里可以填的自然数有( )。[写出所有可能]
51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
52、在实际应用中,小数除法所
53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)
55、长方形里最大的圆。两者联系:宽=直径
56、同一个圆内的所有线段中,圆的直径是最长的。
57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84
58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5
59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。
60、半圆的面积是圆面积的一半。S半圆=r22
——五年级上册数学知识点 50句菁华
1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。
5、用计算器来验算
6、有限小数:小数部分的位数是有限的小数,叫做有限小数。
7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
8、长方形面积=长×宽字母公式:s=ab
9、组合图形:转化成已学的简单图形,通过加、减进行计算。
10、重叠法;
11、分割*移法;
12、公式计算面积法;
13、三角形面积=底×高÷2(s三=ah÷2)
14、1*方千米=100公顷=1000000*方米
15、①分子相同,分母小的分数反而大,分母大的分数反而小。
16、求近似数的方法一般有三种:(P10)
17、(P11)小数四则运算顺序跟整数是一样的。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、(关于“大约)应用题:
20、圆柱的侧面积=底面圆的周长×高:S=ch。
21、长方形的周长=(长+宽)×2:C=(a+b)×2。
22、*行四边形的面积=底×高:S=ah。
23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。
24、圆的面积=圆周率×半径×半径:s=πr2。
25、三角形的面积=底×高÷2 S=ah÷2
26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2
27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2
29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
31、所有的方程都是等式,但等式不一定都是方程。
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。
33、身份证码: 18 位
34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
35、可以表示起点
36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
38、表示相等关系的式子叫做等式。
39、方程一定是等式;等式不一定是方程。等式>方程
40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?
43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。
44、求近似数的方法一般有三种:
45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
46、除法中的变化规律:
47、有些事件的发生是确定的,有些是不确定的。 可能
48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
49、正方形里最大的圆。两者联系:边长=直径
50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——五年级数学知识点 30句菁华
1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
2、裂项公式(用于特殊的简便计算)
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数
4、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。
5、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
6、循环小数问题:
7、732732写作10.732。
8、小数除以整数:
9、当被除数与除数同时扩大或缩小相同的倍数时,商不变。
10、当被除数(不为0)除以一个小于它的数时,商大于1。
11、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小
12、大单位到小单位,乘进率。小单位到大单位,除以进率。
13、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。
14、三角形面积是与它等底等高的*行四边形面积的一半。
15、100以内的质数歌谣
16、表示相等关系的式子叫做等式。
17、方程一定是等式;等式不一定是方程。等式>方程
18、20以内的自然数中(包括20),奇数有()偶数有()
19、5□中最大填()时这个数能被3整除,这个数的约数有()
20、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()
21、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6*方分米,这段长方体钢材的体积是()立方分米。
22、一个非0自然数不是质数,就是合数。()
23、一个长方体(不含正方体)最多有8条棱相等。()
24、9×1.4+2×0.16200-(3.05+7.1)×18
25、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?
26、求近似数的方法一般有三种:
27、小数四则运算顺序和运算定律跟整数是一样的。
28、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
29、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
30、事件发生的机会(或概率)有大小。
——六年级上册数学知识点 50句菁华
1、异分母分数加减法计算方法:
2、小数除法法则:
3、连结梯形对角线中点的线段等于两底的一半。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分数乘整数的意义
6、分数乘分数的的计算方法
7、找单位“1”的方法
8、求一个数的几倍、几分之几是多少,用乘法计算。
9、20是25的几分之几? 20÷25=4/5
10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。
14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)
15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。
16、加法交换律:a+b=b+a
17、直接求一个数是另一个数的百分之几一个数÷另一个数
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
21、路程一定,速度比和时间比成反比。
22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。
23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。
25、分数应用题基本数量关系(把分数看成比)
26、被除数÷除数=被除数×除数的倒数。
27、自然数和0都是整数。
28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
32、小数点位置的移动引起小数大小的变化
33、被除数 相当于分子,除数相当于分母。
34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
35、、长方体
36、圆形
37、圆柱体
38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
39、分数除法应用题:
40、根据比的基本性质,可以把比化成最简单的整数比。
41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
42、理解并掌握分数除法的计算方法,会进行分数除法计算;
43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
45、百分数的意义,求一个数是另一个数的百分之几的应用题;
46、小数的倒数:
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、比和比例的意义:
49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
——数学七年级上册知识点 50句菁华
1、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
3、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
4、几何图形
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
6、有理数的运算:
7、添括号法则
8、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
9、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
10、等式的性质
11、有理数的概念
12、负数:小于0的数。
13、数轴的三要素:原点、正方向、单位长度。
14、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
15、先定符号,再算绝对值。
16、乘积是1的两个数互为倒数。
17、乘法交换律:ab=ba
18、乘法分配律:a(b+c)=ab+ac
19、除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
21、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
22、先乘方,再乘除,最后加减。
23、同级运算,从左到右进行。
24、系数;一个单项式中,数字因数叫做这个单项式的系数。
25、常数项:不含字母的项叫做常数项。
26、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
27、2 有理数
28、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
29、大于0的数叫做正数(positivenumber).
30、在直线上任取一个点表示数0,这个点叫做原点(origin).
31、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
32、两个负数,绝对值大的反而小.
33、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
34、几何图形的投影问题
35、数轴上一点a到原点的距离表示a的绝对值。
36、两个负数,绝对值大的反而小。
37、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。
38、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
39、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
40、科学的记录笔记
41、列代数式
42、利用数轴表示两数大小
43、a可以表示什么数
44、相反数的性质与判定
45、绝对值的几何定义
46、可用字母表示为
47、可归纳为
48、有理数的乘法法则
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
——初中九年级化学知识点重点 40句菁华
1、甲烷燃烧:蓝色火焰、放热、生成使石灰水变浑浊气体和使无水CuSO4变蓝的液体(水)
2、铁钉放入稀硫酸:有少量气泡产生、金属颗粒逐渐溶解,溶液变成浅绿色。
3、CuSO4与NaOH溶液的反应: 蓝色沉淀生成。 14、C O点燃:蓝色火焰
4、C和CuO高温加热:黑色逐渐变为红色,产生使澄清石灰水变浑浊的气体
5、通常状况下,氧气是无色无味的气体,密度比空气略大,不易溶于水,液氧是淡蓝色的
6、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液
7、燃烧发白光的物质:镁条,木炭,蜡烛。
8、具有可燃性,还原性的物质:氢气,一氧化碳,单质碳。
9、co的三种化学性质:可燃性,还原性,毒性。
10、炼铁的三种氧化物:铁矿石,焦炭,石灰石。
11、实验室制取co2不能用的三种物质:硝酸,浓硫酸,碳酸钠。
12、液体过滤操作中的三靠:
13、固体配溶液的三个步骤:计算,称量,溶解。
14、水煤气:一氧化碳(co)和氢气(h2)
15、木炭/焦炭/炭黑/活性炭:(c)
16、碳酸钠(na2co3):纯碱,苏打,口碱
17、氢氧化钠(naoh):火碱,烧碱,苛性钠
18、氢氯酸(hcl):盐酸
19、碱式碳酸铜(cu2(oh)2co3):铜绿
20、甲烷(ch4):沼气
21、蓝色沉淀:氢氧化铜;
22、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭);
23、黑色金属只有三种:铁、锰、铬。
24、铁的氧化物有三种,其化学式为
25、原子团一定是带电荷的离子,但原子团不一定是酸根(如NH4+、OH-);酸根也不一定是原子团(如Cl--叫氢氯酸根)
26、有单质和化合物参加或生成的反应,不一定就是置换反应。但一定有元素化合价的改变。14、分解反应和化合反应中不一定有元素化合价的改变;置换反应中一定有元素化合价的改变;复分解反应中一定没有元素化合价的改变。(注意:氧化还原反应,一定有元素化合价的变化)15、单质一定不会发生分解反应。
27、同种元素在同一化合物中不一定显示一种化合价。如NH4NO3(前面的N为-3价,后面的N为+5价)
28、生成盐和水的反应不一定是中和反应。
29、所有化学反应并不一定都属基本反应类型,不属基本反应的有:①CO与金属氧化物的反应;②酸性氧化物与碱的反应;③有机物的燃烧。
30、5g某物质放入95g水中,充分溶解后,所得溶液的溶质质量分数不一定等于5%。
31、物质的变化及性质
32、木炭在氧气中燃烧:剧烈燃烧、产生白光、放热、生成使石灰水变浑浊的气体
33、氢气在空气中燃烧:淡蓝色火焰、放热、生成使无水CuSO4变蓝的液体(水)
34、红褐色固体:氢氧化铁
35、黄绿色气体:氯气
36、我国古代三大化学工艺:造纸,制火药,烧瓷器。
37、炼钢的主要设备有三种:转炉、电炉、*炉。
38、饱和溶液变不饱和溶液有两种方法:(1)升温、(2)加溶剂;不饱和溶液变饱和溶液有三种方法:降温、加溶质、恒温蒸发溶剂。 (注意:溶解度随温度而变小的物质如:氢氧化钙溶液由饱和溶液变不饱和溶液:降温、加溶剂;不饱和溶液变饱和溶液有三种方法:升温、加溶质、恒温蒸发溶剂)。
39、化学变化中一定有物理变化,物理变化中不一定有化学变化。
40、金属常温下不一定都是固体(如Hg是液态的),非金属不一定都是气体或固体(如Br2是液态的)注意:金属、非金属是指单质,不能与物质组成元素混淆