1、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高
2、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积
3、空心圆柱 R-外圆半径;r-内圆半径;h-高
4、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径 V=22Rr2=2Dd2/4
5、过两点有且只有一条直线
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、同位角相等,两直线*行
8、内错角相等,两直线*行
9、推论3三角形的一个外角大于任何一个和它不相邻的内角
10、边边边公理(SSS)有三边对应相等的两个三角形全等
11、推论2有一个角等于60°的等腰三角形是等边三角形
12、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
13、四边形的外角和等于360°
14、*行四边形判定定理3对角线互相*分的四边形是*行四边形
15、菱形性质定理1菱形的四条边都相等
16、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角
17、菱形面积=对角线乘积的一半,即S=(a×b)÷2
18、对角线相等的梯形是等腰梯形
19、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰
20、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半
21、梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h
22、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例
23、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边
24、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
25、判定定理3三边对应成比例,两三角形相似(SSS)
26、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
29、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
30、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
31、推论2经过切点且垂直于切线的直线必经过圆心
32、圆的外切四边形的两组对边的和相等
33、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
34、①两圆外离d﹥R+r
35、定理把圆分成n(n≥3):
36、正三角形面积√3a/4
37、弧长计算公式:L=n∏R/180
38、直线,射线,线段
39、垂线的相关定义
40、在比较两条线段的长短时,要弄清那一条是垂线
——数学知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、利用等底等高的两个三角形面积相等。
3、利用特殊规律
4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
5、大于0的数叫做正数。
6、在正数前面加上负号“-”的数叫做负数。
7、整数和分数统称为有理数。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、一个加数=和—另一个加数
10、被减数=减数+差
11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、进行检验,写出答案。
14、加法意义和运算定律
15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
17、求一个数的几分之几是多少?(用乘法)
18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
19、同角或等角的补角相等
20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半
21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
22、乘法分配律:a × b + a × c = a ×(b + c)
23、知道除法算式中各部分的名称:被除数、除数、商。
24、被除数末尾0前面能被除尽,0应写在4的下方。
25、除法的应用p44
26、单价、数量、总价p45、46
27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
31、比的后项不能为0。
32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
33、解比例式
34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)
35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
36、数的分类及概念数系表:
37、绝对值:①定义(两种):
38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
39、求函数的最值与值域的区别和联系
40、定义
41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。
42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
43、调查方式:
44、韦达定理
45、三角形内角和定理:
46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
48、相似三角形判定定理1
49、正n边形的每个内角都等于(n-2)×180°/n
50、弧长计算公式:L=n兀R/180——》L=nR
——初中数学重要知识点总结 40句菁华
1、求不等式的解集的过程,叫做解不等式。
2、用数轴表示不等式的方法。
3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
5、一元一次不等式组的解法
6、不等式与不等式组
7、列一元一次方程解应用题:
8、混合运算法则:先乘方,后乘除,最后加减。
9、代数式
10、解一元二次方程的步骤:
11、角
12、同角或等角的余角相等——余角=90-角度。
13、过一点有且只有一条直线和已知直线垂直
14、直线外一点与直线上各点连接的所有线段中,垂线段最短
15、同位角相等,两直线*行
16、同旁内角互补,两直线*行
17、推论
18、三角形内角和定理:
19、推论1
20、直角三角形斜边上的中线等于斜边上的一半
21、矩形性质定理1
22、菱形性质定理2
23、三角形中位线定理
24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
26、性质定理1
27、性质定理2
28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
31、切线的性质定理
32、①两圆外离
33、弧长计算公式:L=n兀R/180——》L=nR
34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
35、切线的性质定理圆的切线垂直于经过切点的半径
36、推论1经过圆心且垂直于切线的直线必经过切点
37、定理相交两圆的连心线垂直*分两圆的公共弦
38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正三角形面积√3a/4a表示边长
40、弧长计算公式:L=n兀R/180
——数学圆知识点总结 40句菁华
1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
2、定理:一条弧所对的圆周角等于它所对的圆心角的一半
3、①直线L和⊙O相交d﹤r
4、推论:经过切点且垂直于切线的直线必经过圆心
5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
6、圆的外切四边形的两组对边的和相等
7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
8、①两圆外离d﹥R+r
9、正三角形面积√3a2/4a表示边长
10、弧长计算公式:L=n兀R/180
11、圆心决定圆的位置,半径决定圆的大小。
12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
14、两个数相除,又叫做这两个数的比。比的后项不能为0.
15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、定理相交两圆的连心线垂直*分两圆的公共弦
20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
22、内公切线长= d-R-r外公切线长= d-R+r
23、定理一条弧所对的圆周角等于它所对的圆心角的一半
24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
26、一条弧所对的圆周角等于它所对的圆心角的一半。
27、圆的面积S=πr
28、圆锥侧面积S=rl
29、圆的标准方程
30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
33、圆的周长C=2πr=πd
34、圆锥侧面积S=πrl
35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧
36、①直线L和⊙O相交 d
37、切线的性质定理 圆的切线垂直于经过切点的半径
38、正n边形的每个内角都等于(n-2)×180°/n
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
——数学七年级上册知识点 50句菁华
1、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
3、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
4、几何图形
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
6、有理数的运算:
7、添括号法则
8、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
9、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
10、等式的性质
11、有理数的概念
12、负数:小于0的数。
13、数轴的三要素:原点、正方向、单位长度。
14、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
15、先定符号,再算绝对值。
16、乘积是1的两个数互为倒数。
17、乘法交换律:ab=ba
18、乘法分配律:a(b+c)=ab+ac
19、除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
21、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
22、先乘方,再乘除,最后加减。
23、同级运算,从左到右进行。
24、系数;一个单项式中,数字因数叫做这个单项式的系数。
25、常数项:不含字母的项叫做常数项。
26、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
27、2 有理数
28、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
29、大于0的数叫做正数(positivenumber).
30、在直线上任取一个点表示数0,这个点叫做原点(origin).
31、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
32、两个负数,绝对值大的反而小.
33、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
34、几何图形的投影问题
35、数轴上一点a到原点的距离表示a的绝对值。
36、两个负数,绝对值大的反而小。
37、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。
38、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
39、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
40、科学的记录笔记
41、列代数式
42、利用数轴表示两数大小
43、a可以表示什么数
44、相反数的性质与判定
45、绝对值的几何定义
46、可用字母表示为
47、可归纳为
48、有理数的乘法法则
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
——二年级下册数学知识点 40句菁华
1、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
2、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
4、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
5、当吹东南风时,红旗往()飘;
6、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
7、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
8、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
9、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
10、时针走一大格是1小时,走一圈是12小时;
11、数位顺序表里:从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。
12、用估算策略解决问题。
13、用统计图表来表示数据的情况。
14、根据统计图表可以做出一些判断。
15、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。
16、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
17、用乘法口诀求商时,想除数和几相乘的被除数。
18、用乘法和除法两步计算解决实际问题的方法:
19、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
20、除法的性质
21、完全商
22、三角形的内角和定理,及三角形外角定理。
23、学会用“正”字记录数据。
24、两边之和大于第三边,两边之差小于第三边。
25、认识整时方法:分针指着12,时针指着几就是几时。
26、教材分析:
27、引导学生积极参与知识的构建,营造民主、和谐、*等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
28、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
29、3/1分子分母同时乘以3,得到9/3,这也是整数3的一个分数形式。
30、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。
31、可以得知整数化分数,可以化无数个。
32、可以表示分界
33、鸽巢原理也叫抽屉原理。
34、存在任意长度的素数等差数列。(格林和陶哲轩,2004年)
35、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
36、正方形的周长=边长×4:C=4a。
37、长方体的表面积=(长×宽+长×高+宽×高)×2。
38、正方体的表面积=棱长×棱长×6:S=6a×a。
39、205. 207. ( ). ( ). ( )
40、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
——六年级数学下册知识点 40句菁华
1、能借助数轴初步学会比较正数、0和负数之间的大小。
2、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
3、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8<-6。
4、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
8、把圆锥的侧面展开得到一个扇形。
9、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
11、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
12、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
13、通过“抽屉原理”的灵活应用感受数学的魅力。
14、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
15、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算*均数的实际问题。
16、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
17、(1)圆柱两个底面之间的距离叫做圆柱的高。
18、圆柱的底面是圆形,面不是椭圆。
19、一个圆柱占空间的大小,叫做这个圆柱的体积。
20、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h
21、圆锥是由一个底面和一个侧面两部分组成。
22、半圆能围成圆锥,但整圆不能围成圆锥。
23、圆柱体积是圆锥体积的3倍或者说圆锥体积是圆柱体积的1/3,必须以“圆柱和圆锥等底等高”为前提。
24、统计。
25、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。
26、只有一组对边*行的四边形叫梯形。
27、折扣:
28、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
29、以长方形的长为底面周长,宽为高;
30、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
31、圆锥的特征:
32、圆锥的相关计算公式:
33、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
34、求比值和化简比:
35、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
36、判断两种量成正比例还是成反比例的方法:
37、用比例解决问题:
38、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
39、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用
40、摸2个同色球计算方法。