1、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高
2、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积
3、空心圆柱 R-外圆半径;r-内圆半径;h-高
4、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径 V=22Rr2=2Dd2/4
5、过两点有且只有一条直线
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、同位角相等,两直线*行
8、内错角相等,两直线*行
9、推论3三角形的一个外角大于任何一个和它不相邻的内角
10、边边边公理(SSS)有三边对应相等的两个三角形全等
11、推论2有一个角等于60°的等腰三角形是等边三角形
12、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
13、四边形的外角和等于360°
14、*行四边形判定定理3对角线互相*分的四边形是*行四边形
15、菱形性质定理1菱形的四条边都相等
16、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角
17、菱形面积=对角线乘积的一半,即S=(a×b)÷2
18、对角线相等的梯形是等腰梯形
19、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰
20、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半
21、梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h
22、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例
23、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边
24、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
25、判定定理3三边对应成比例,两三角形相似(SSS)
26、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
29、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
30、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
31、推论2经过切点且垂直于切线的直线必经过圆心
32、圆的外切四边形的两组对边的和相等
33、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
34、①两圆外离d﹥R+r
35、定理把圆分成n(n≥3):
36、正三角形面积√3a/4
37、弧长计算公式:L=n∏R/180
38、直线,射线,线段
39、垂线的相关定义
40、在比较两条线段的长短时,要弄清那一条是垂线
——数学知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、利用等底等高的两个三角形面积相等。
3、利用特殊规律
4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
5、大于0的数叫做正数。
6、在正数前面加上负号“-”的数叫做负数。
7、整数和分数统称为有理数。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、一个加数=和—另一个加数
10、被减数=减数+差
11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、进行检验,写出答案。
14、加法意义和运算定律
15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
17、求一个数的几分之几是多少?(用乘法)
18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
19、同角或等角的补角相等
20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半
21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
22、乘法分配律:a × b + a × c = a ×(b + c)
23、知道除法算式中各部分的名称:被除数、除数、商。
24、被除数末尾0前面能被除尽,0应写在4的下方。
25、除法的应用p44
26、单价、数量、总价p45、46
27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
31、比的后项不能为0。
32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
33、解比例式
34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)
35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数
36、数的分类及概念数系表:
37、绝对值:①定义(两种):
38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
39、求函数的最值与值域的区别和联系
40、定义
41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。
42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
43、调查方式:
44、韦达定理
45、三角形内角和定理:
46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
48、相似三角形判定定理1
49、正n边形的每个内角都等于(n-2)×180°/n
50、弧长计算公式:L=n兀R/180——》L=nR
——初中数学重要知识点总结 40句菁华
1、求不等式的解集的过程,叫做解不等式。
2、用数轴表示不等式的方法。
3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
5、一元一次不等式组的解法
6、不等式与不等式组
7、列一元一次方程解应用题:
8、混合运算法则:先乘方,后乘除,最后加减。
9、代数式
10、解一元二次方程的步骤:
11、角
12、同角或等角的余角相等——余角=90-角度。
13、过一点有且只有一条直线和已知直线垂直
14、直线外一点与直线上各点连接的所有线段中,垂线段最短
15、同位角相等,两直线*行
16、同旁内角互补,两直线*行
17、推论
18、三角形内角和定理:
19、推论1
20、直角三角形斜边上的中线等于斜边上的一半
21、矩形性质定理1
22、菱形性质定理2
23、三角形中位线定理
24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
26、性质定理1
27、性质定理2
28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
31、切线的性质定理
32、①两圆外离
33、弧长计算公式:L=n兀R/180——》L=nR
34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
35、切线的性质定理圆的切线垂直于经过切点的半径
36、推论1经过圆心且垂直于切线的直线必经过切点
37、定理相交两圆的连心线垂直*分两圆的公共弦
38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正三角形面积√3a/4a表示边长
40、弧长计算公式:L=n兀R/180
——数学圆知识点总结 40句菁华
1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
2、定理:一条弧所对的圆周角等于它所对的圆心角的一半
3、①直线L和⊙O相交d﹤r
4、推论:经过切点且垂直于切线的直线必经过圆心
5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
6、圆的外切四边形的两组对边的和相等
7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
8、①两圆外离d﹥R+r
9、正三角形面积√3a2/4a表示边长
10、弧长计算公式:L=n兀R/180
11、圆心决定圆的位置,半径决定圆的大小。
12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
14、两个数相除,又叫做这两个数的比。比的后项不能为0.
15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、定理相交两圆的连心线垂直*分两圆的公共弦
20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
22、内公切线长= d-R-r外公切线长= d-R+r
23、定理一条弧所对的圆周角等于它所对的圆心角的一半
24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
26、一条弧所对的圆周角等于它所对的圆心角的一半。
27、圆的面积S=πr
28、圆锥侧面积S=rl
29、圆的标准方程
30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
33、圆的周长C=2πr=πd
34、圆锥侧面积S=πrl
35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧
36、①直线L和⊙O相交 d
37、切线的性质定理 圆的切线垂直于经过切点的半径
38、正n边形的每个内角都等于(n-2)×180°/n
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
——六年级数学上册知识点 60句菁华
1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
2、两个小数的比,向右移动小数点的位置。也是先化成整数比。
3、3 32
4、条形统计图:可以清楚的看出数据的多少
5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
10、被除数÷除数= 被除数/除数
11、因为零不能作除数,所以分数的分母不能为零。
12、乘法分配律:
13、整数减法计算法则:
14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
15、混合运算用梯等式计算,等号写在第一个数字的左下角。
16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
17、找单位“1”的方法
18、1的倒数是1,0没有倒数。
19、被除数与商的大小关系
20、20是25的几分之几? 20÷25=4/5
21、已知单位“1”用乘法,求单位“1”用除法;
22、工程问题
23、一个数乘分数的意义就是求一个数的几分之几是多少。
24、求一个数的几分之几是多少?(用乘法)
25、什么是速度?
26、求一个数的百分之几是多少。一个数(单位“1”)×百分率
27、已知一个数的百分之几是多少,求这个数。
28、常用统计图的优点:
29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
33、百分数应用:
34、圆的定义:
35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。
36、半径为1厘米的圆的周长是3.14厘米。(__)
37、这个月哪项出最多?支出了多少元?
38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
39、常见的百分率的计算方法:
40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)
43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
44、除数是整数的小数除法计算法则:
45、圆锥体
46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
47、化简比:化简之后结果还是一个比,不是一个数。
48、比和除法、分数的区别:
49、已知单位“1”的量用乘法。
50、画线段图:
51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
53、比和比例的意义:
54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
55、“数与形相结合”的思想
56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
57、圆的半径越长,这个圆就越大。(__)
58、画一个半径为1厘米的圆。
59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。
60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?
——初中数学知识点总结 50句菁华
1、同角或等角的余角相等——余角=90-角度。
2、推论1
3、推论2
4、*行四边形性质定理3
5、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
6、点、线、面、体
7、生活中的立体图形
8、线段的性质
9、角的度量
10、①直线L和⊙O相交
11、切线的性质定理
12、有理数减法:减去一个数,等于加上这个数的相反数。
13、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
14、内公切线长=d-(R-r)
15、高线、中线、角*分线的意义和做法
16、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
17、直角三角形中,30°角所对的直角边等于斜边的一半。
18、多边形的内角:多边形相邻两边组成的角叫做它的内角。
19、公式与性质
20、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
21、推论2经过切点且垂直于切线的直线必经过圆心
22、扇形面积公式:S扇形=n兀R^2/360=LR/2
23、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
24、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
25、函数图象的最低点和最高点.
26、在正数前面加上负号“-”的数叫做负数。
27、邻边相等的矩形。
28、过一点有且只有一条直线和已知直线垂直。
29、推论2三角形的一个外角等于和它不相邻的两个内角的和。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合。
32、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合。
33、*行四边形性质定理1*行四边形的对角相等。
34、矩形判定定理1有三个角是直角的四边形是矩形。
35、菱形判定定理1四边都相等的四边形是菱形。
36、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
37、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
38、圆是定点的距离等于定长的点的集合。
39、定理一条弧所对的圆周角等于它所对的圆心角的一半。
40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
41、推论2经过切点且垂直于切线的直线必经过圆心。
42、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
43、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
44、运算法则(加、减、乘、除、乘方、开方)
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
47、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
48、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
49、Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
50、不等式的解法:
——小学数学三年级知识点 50句菁华
1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
2、读数和写数(读数时写汉字写数时写*数字)
3、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
4、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。
7、只要是*均分就用(除法)计算。
8、笔算除法顺序:确定商的位数,试商,检查,验算。
9、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)
10、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。
11、小月:有30天的月份是大月。小月有4月、6月、9月、11月。
12、整千、整百、整十数除以一位数的口算方法。
13、会判断商是几位数。
14、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
15、质量单位:吨、千克、克,每相邻两个单位之间的`进率都是1000。
16、把一些白色围棋子放在书包里,从中任意摸出一个,()是白棋子。
17、从8个红色的的玻璃球和2个*的玻璃球中任意摸出一个,找到()色的玻璃球可能性更大些。
18、小明去旅游,这次旅游买火车票一共花了多少钱?(5分)
19、图书馆原来有科技书674本,现有多少本?(4分)
20、计算13×3,可以先算()×3=(),再算()×3=(),最后算()+()=(),所以13×3=()。
21、33×2=66。()
22、因为3×5=15,所以300×5=1500。()
23、我有24元钱,姐姐的钱是我的2倍,姐姐有多少元钱?
24、角的组成:角是由一个顶点、两条边组成的。
25、角的大小与角的两条边的长短没有关系,跟角的开口大小有关系:角的开口越大,角就越大;开口越小,角就越小。
26、锐角:比直角小的角叫锐角,也就是:锐角<90°(角的度数不要求掌握,了解即可)
27、在方格纸上画角时,选定方格纸的一个横竖线交叉点为角的顶点,另一边就沿着横线或竖线画,这样画清楚干净,而且直角更好画,不易丢分。
28、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
29、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
30、1时30分=()分1分55秒=(115)秒
31、利民超市上午9:00营业,晚上8:00关门。这一天的营业时间是()小时。
32、小明做一道数学口算题大约需要3()。
33、莉莉跳100下绳子用了30()。
34、钟面上有三根针,最长的是秒针,最短的是时针。()
35、王红1分钟能做8道数学口算题,那么,她能用6分钟能完成45道口算题吗?
36、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
37、①相同分母的分数相加、减:分母不变,只和分子相加、减。
38、把一块月饼*均分成2份,每份是这块月饼的一半,也就是它的()分之(),写作(—)。
39、一本书有21页,*均每天看这本书的3页,占全书的()
40、东东看一本故事书,第一天看了全书的25,剩下的第二天看完,第二天看了这本书的几分之几?
41、一张长方形的纸它的19涂红色,它的59蓝色,没涂色部分占这张纸的几分之几?
42、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
43、读数和写数(读数时写汉字写数时写*数字)
44、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
45、公式
46、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
47、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
48、(关于“大约)应用题:
49、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
50、*行四边形的特点:
——数学七年级上册知识点 50句菁华
1、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
3、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
4、几何图形
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
6、有理数的运算:
7、添括号法则
8、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
9、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
10、等式的性质
11、有理数的概念
12、负数:小于0的数。
13、数轴的三要素:原点、正方向、单位长度。
14、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
15、先定符号,再算绝对值。
16、乘积是1的两个数互为倒数。
17、乘法交换律:ab=ba
18、乘法分配律:a(b+c)=ab+ac
19、除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
21、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
22、先乘方,再乘除,最后加减。
23、同级运算,从左到右进行。
24、系数;一个单项式中,数字因数叫做这个单项式的系数。
25、常数项:不含字母的项叫做常数项。
26、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
27、2 有理数
28、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
29、大于0的数叫做正数(positivenumber).
30、在直线上任取一个点表示数0,这个点叫做原点(origin).
31、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
32、两个负数,绝对值大的反而小.
33、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
34、几何图形的投影问题
35、数轴上一点a到原点的距离表示a的绝对值。
36、两个负数,绝对值大的反而小。
37、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。
38、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
39、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
40、科学的记录笔记
41、列代数式
42、利用数轴表示两数大小
43、a可以表示什么数
44、相反数的性质与判定
45、绝对值的几何定义
46、可用字母表示为
47、可归纳为
48、有理数的乘法法则
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
——三年级上册数学知识点总结 40句菁华
1、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
2、公式。(每两个相邻的时间单位之间的进率是60)
3、在计算长度时,只有相同的长度单位才能相加减。
4、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
5、读数和写数(读数时写汉字写数时写*数字)
6、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
7、有4条直的边和4个角封闭图形我们叫它四边形。
8、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
9、四边形的特点:有四条直的边,有四个角。
10、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
11、正方形的特点:有4个直角,4条边相等。
12、公式:
13、连乘的简便计算:
14、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
15、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
16、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
17、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
18、把分数化成小数的方法:用分数的分子除以分母。
19、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
20、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
21、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
22、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
23、*行四边形的特点:对边*行且相等、对角相等。
24、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。
25、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
26、关于0的一些规定:
27、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
28、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
29、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
30、认识整千数(记忆:10个一千是一万)
31、读数和写数(读数时写汉字写数时写*数字)
32、要认真审题,弄清题目要求后再做。
33、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
34、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
35、用乘法口诀求商时,想除数和几相乘等于被除数。
36、用乘法和除法两步计算解决实际问题的方法:
37、正确理解并熟记相邻的面积单位之间的进率。
38、低级单位——高级单位:数量÷它们间的进率
39、速度和=相遇路程÷相遇时间
40、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
——六年级上册数学知识点总结 40句菁华
1、圆的定义:圆是由曲线围成的一种*面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
7、圆周率实验:
8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
10、取近似数的方法:
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
13、比例的基本性质是在比例里两内项积等于两外项积。
14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
18、分子分母是互质数的分数叫做最简分数。
19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
21、整数除法计算法则:
22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
26、小数的倒数:
27、各类地形中,什么地形面积?什么最小?
28、这个月哪项出最多?支出了多少元?
29、小数点位置的移动引起小数大小的变化
30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
31、减法的性质:
32、整数乘法计算法则:
33、小数乘法法则:
34、同分母分数加减法计算方法:
35、异分母分数加减法计算方法:
36、小数除法的意义
37、、长方形
38、、长方体
39、三角形
40、圆形