1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
2、定理:一条弧所对的圆周角等于它所对的圆心角的一半
3、①直线L和⊙O相交d﹤r
4、推论:经过切点且垂直于切线的直线必经过圆心
5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
6、圆的外切四边形的两组对边的和相等
7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
8、①两圆外离d﹥R+r
9、正三角形面积√3a2/4a表示边长
10、弧长计算公式:L=n兀R/180
11、圆心决定圆的位置,半径决定圆的大小。
12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
14、两个数相除,又叫做这两个数的比。比的后项不能为0.
15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、定理相交两圆的连心线垂直*分两圆的公共弦
20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
22、内公切线长= d-R-r外公切线长= d-R+r
23、定理一条弧所对的圆周角等于它所对的圆心角的一半
24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
26、一条弧所对的圆周角等于它所对的圆心角的一半。
27、圆的面积S=πr
28、圆锥侧面积S=rl
29、圆的标准方程
30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
33、圆的周长C=2πr=πd
34、圆锥侧面积S=πrl
35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧
36、①直线L和⊙O相交 d
37、切线的性质定理 圆的切线垂直于经过切点的半径
38、正n边形的每个内角都等于(n-2)×180°/n
39、定理 一条弧所对的圆周角等于它所对的圆心角的一半
40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
——初中数学重要知识点总结 40句菁华
1、求不等式的解集的过程,叫做解不等式。
2、用数轴表示不等式的方法。
3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
5、一元一次不等式组的解法
6、不等式与不等式组
7、列一元一次方程解应用题:
8、混合运算法则:先乘方,后乘除,最后加减。
9、代数式
10、解一元二次方程的步骤:
11、角
12、同角或等角的余角相等——余角=90-角度。
13、过一点有且只有一条直线和已知直线垂直
14、直线外一点与直线上各点连接的所有线段中,垂线段最短
15、同位角相等,两直线*行
16、同旁内角互补,两直线*行
17、推论
18、三角形内角和定理:
19、推论1
20、直角三角形斜边上的中线等于斜边上的一半
21、矩形性质定理1
22、菱形性质定理2
23、三角形中位线定理
24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
26、性质定理1
27、性质定理2
28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
31、切线的性质定理
32、①两圆外离
33、弧长计算公式:L=n兀R/180——》L=nR
34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
35、切线的性质定理圆的切线垂直于经过切点的半径
36、推论1经过圆心且垂直于切线的直线必经过切点
37、定理相交两圆的连心线垂直*分两圆的公共弦
38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正三角形面积√3a/4a表示边长
40、弧长计算公式:L=n兀R/180
——数学知识点总结 40句菁华
1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
3、2.1直线与*面*行的判定
4、2.2*面与*面*行的判定
5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。
6、2.3—2.2.4直线与*面、*面与*面*行的性质
7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。
8、定理:垂直于同一个*面的两条直线*行。
9、Venn图:
10、“相等”关系:A=B(5≥5,且5≤5,则5=5)
11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.
12、圆的外部可以看作是圆心的距离大于半径的点的集合
13、到已知角的两边距离相等的点的轨迹,是这个角的*分线
14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
15、定理不在同一直线上的三点确定一个圆。
16、圆是以圆心为对称中心的中心对称图形
17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
19、切线的性质定理:圆的切线垂直于经过切点的半径
20、弦切角定理:弦切角等于它所夹的弧对的圆周角
21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
22、弧长计算公式:L=n兀R/180
23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)
24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
25、圆方程
26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
30、集合的分类:有限集,无限集,空集。
31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
32、根据自变量的取值范围对函数进行分段.
33、空间中的*行问题
34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
35、忽视集合元素的三性致误
36、函数的单调区间理解不准致误
37、三角函数的单调性判断致误
38、对数列的定义、性质理解错误
39、数列中的最值错误
40、忽视三视图中的实、虚线致误
——数学中考圆的知识点 40句菁华
1、反证法
2、圆的定义
3、直线圆的与置位关系
4、线直与圆有唯公一共时,点做直叫与圆线切
5、弦切角于所等夹弧所对的的圆心角
6、圆切线垂的直过切于点半径
7、弧、优弧、劣弧
8、圆的轴对称性
9、圆心角
10、弧、弦、弦心距、圆心角之间的关系定理
11、切线长定理
12、圆和圆的位置关系
13、圆心距
14、圆和圆位置关系的性质与判定
15、中心角
16、正多边形的定义
17、正多边形的画法
18、圆锥的侧面积
19、圆有无数条半径,有无数条直径。
20、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
21、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
22、分数乘分数是求一个数的几分之几是多少。
23、求分数的倒数是交换分子分母的位置。
24、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
25、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
26、如果两个圆相切,那么切点一定在连心线上
27、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
28、如果在一个顶点周围有k个正n边形的'角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
29、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
30、制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。
31、独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。
32、直线与圆的位置关系
33、到角两边距离相等的点的轨迹是:角的*分线;
34、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
35、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2
36、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2
37、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。
38、环形的周长=外圆周长+内圆周长
39、半圆面积=圆面积÷2公式为:S=πr2÷2
40、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
——中考数学知识点 50句菁华
1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
2、直角坐标系中,点A(3,0)在轴上。
3、直角坐标系中,点A(-2,3)在第四象限。
4、直角坐标系中,点A(-2,1)在第二象限。
5、数据1,2,3,4,5的中位数是3.
6、cs30°=。
7、sin260°+cs260°=1.
8、tan45°=1.
9、任意一个三角形一定有一个外接圆。
10、同圆或等圆的半径相等。
11、经过圆心*分弦的直径垂直于弦。
12、非负数:正实数与零的统称。(表为:x≥0)
13、相反数:①定义及表示法
14、奇数、偶数、质数、合数(正整数-自然数)
15、单项式与多项式
16、系数与指数
17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
19、科学记数法:(1≤a<10,n是整数=
20、个体:总体中每一个考察对象。
21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。
22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
24、一次函数
25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
27、圆的定义(两种)
28、正多边形及计算
29、圆柱、圆锥的侧面展开图及相关计算
30、作法与图形:通过如下3个步骤
31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。
32、抛物线是轴对称图形。对称轴为直线
33、一次项系数b和二次项系数a共同决定对称轴的位置。
34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。
35、用待定系数法求二次函数的解析式
36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
37、见直径往往作直径上的'圆周角
38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
40、(P11)小数四则运算顺序跟整数是一样的。
41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
43、方程的解是一个数;
44、长方形框架拉成*行四边形,周长不变,面积变小。
45、5 4 0 0 1
46、重心是三角形内到三边距离之积最大的点。
47、sin260+ cos260= 1.
48、tan45= 1.
49、cos60+ sin30= 1.
50、直角三角形两个锐角互余。
——高等数学知识点总结 50句菁华
1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
3、掌握不定积分的换元积分法。
4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。
6、会解欧拉方程。
7、能力层面
8、做题之后加强反思。
9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
10、列方程解应用题的常用公式:
11、有理数:①整数→正整数,0,负整数;
12、方程与方程组
13、角
14、同角或等角的补角相等
15、同角或等角的余角相等——余角=90-角度。
16、直线外一点与直线上各点连接的所有线段中,垂线段最短
17、同旁内角互补,两直线*行
18、两直线*行,内错角相等
19、定理
20、三角形内角和定理:
21、推论3
22、全等三角形的对应边、对应角相等
23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
24、*行四边形性质定理1
25、矩形判定定理2
26、菱形性质定理1
27、菱形面积=对角线乘积的一半,即S=(a×b)÷2
28、菱形判定定理2
29、正方形性质定理1
30、等腰梯形判定定理
31、*行线分线段成比例定理
32、相似三角形判定定理1
33、判定定理2
34、性质定理1
35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
36、切线的判定定理
37、圆的外切四边形的两组对边的和相等
38、如果两个圆相切,那么切点一定在连心线上
39、正n边形的每个内角都等于(n-2)×180°/n
40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
41、弧长计算公式:L=n兀R/180——》L=nR
42、绝对值:
43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
44、混合运算法则:先乘方,后乘除,最后加减。
45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
——七年级下册数学知识点总结 40句菁华
1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
12、两条直线被第三条直线所截:
13、垂直公理:过一点有且只有一条直线与已知直线垂直。
14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
15、*行线的性质:
16、*面上不相重合的两条直线之间的位置关系为_______或________
17、倒数
18、大于0的数叫做正数(positive number)。
19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
20、有理数减法法则
21、有理数中仍然有:乘积是1的两个数互为倒数。
22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
25、根据有理数的乘法法则可以得出
26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
30、包围着体的是面(surface),面有*的面和曲的面两种。
31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
32、角∠(angle)也是一种基本的几何图形。
33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
34、等角的补角相等,等角的余角相等。
35、相反数的几何意义
36、相反数的表示方法
37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
40、整式加减的一般步骤:
——小学四年级上册数学知识点总结 40句菁华
1、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
2、按照我国的计数习惯,从右边起,每四个数位是一级。
3、比较数的大小:
4、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
5、ON╱CE:开关及清除屏键,清除显示屏上的内容。
6、国土面积(*、省、市、区等)、海洋面积等特别大的面积适合用*方千米。如
7、长方形面积=长×宽
8、角的大小与角两边的长短没关系。角的大小与*的大小有关系,*得越大,角越大。
9、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
11、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
12、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
13、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b
14、长方形是特殊的*行四边形,正方形是特殊的*行四边形。正方形是特殊的长方形。
15、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
16、商的变化规律:
17、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案.
18、做作业的习惯
19、条形统计图的特点:
20、我们学过的统计图有横向条形统计图、纵向条形统计图以及单式统计图和复试统计图。
21、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
22、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
23、差=被减数-减数
24、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
25、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。
26、验算:没有余数的除法,用商除数,看看是否等于被除数;
27、步骤:、弄清题意,明确已知条件和所求问题;、分析数量关系,确定先算什么,再算什么;
28、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。
29、一定、可能、不可能可以用来描述事件发生的可能性。
30、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。
31、在一个*面内,不相交的两条直线互相*行,其中一条直线是另一条直线的*行线。
32、多位数的大小比较:
33、“万”“亿”作单位的数:
34、计算工具的认识:算盘,计算器
35、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。
36、75度=45度+30度
37、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。
38、只有一组对边*行的四边形叫梯形。
39、画高:
40、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
——数学初中知识点总结 40句菁华
1、有理数:①整数→正整数,0,负整数;
2、函数
3、同角或等角的余角相等——余角=90-角度。
4、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
5、同位角相等,两直线*行
6、两直线*行,同旁内角互补
7、推论2
8、全等三角形的对应边、对应角相等
9、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
10、角的*分线是到角的两边距离相等的所有点的集合
11、等腰三角形的性质定理
12、矩形判定定理1
13、菱形性质定理1
14、菱形判定定理1
15、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
16、等腰梯形的两条对角线相等
17、三角形中位线定理
18、梯形中位线定理
19、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
20、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
21、到已知角的两边距离相等的点的轨迹,是这个角的*分线
22、圆的外切四边形的两组对边的和相等
23、相交弦定理
24、正n边形的面积Sn=pnxrn/2
25、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、高线、中线、角*分线的意义和做法
27、三角形外角的性质
28、对称性:*行四边形是中心对称图形
29、性质:矩形的四个角都是直角,矩形的对角线相等
30、定义:有一组邻边相等的*行四边形叫做菱形
31、对称性:菱形是轴对称图形也是中心对称图形
32、多边形的内角:多边形相邻两边组成的角叫做它的内角。
33、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
34、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
35、推论2经过切点且垂直于切线的直线必经过圆心
36、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
37、正三角形面积√3a/4a表示边长
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、内公切线长=d-(R-r)外公切线长=d-(R+r)
40、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等